Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = |x - 2006| + |2007 - x| ≥ |x - 2006 + 2007 - x|
= |(x - x) - 2006 + 2007| = |1| = 1
Dấu "=" xảy ra khi (x - 2006)(2007 - x) ≥ 0 => 2006 ≤ x ≤ 2007
Vậy gtnn của A là 1 tại 2006 ≤ x ≤ 2007
Mk sửa lại đề nha tìm GTNN
a) B=|x- 2006| -|2007- x|
Vì |x- 2006|\(\ge\)0
|2007- x|\(\ge\)0
Suy ra:|x- 2006| -|2007- x|\(\ge\)0
Dấu = xảy ra khi x-2006=0;x=2006
2007-x=0;x=2007
Vậy Min B=0 khi x=2006
x=2007
1/
l2x+3l=x+2(1)
ta co l2x+3l=\(\hept{\begin{cases}2x+3voix\ge\frac{-3}{2}\\-2x-3voix< \frac{-3}{2}\end{cases}}\)
TH1: neu x>= -3/2 thi (1) <=>2x+3=x+2=>x=-1(chon)
TH2: neu x<= -3/2 thi (1) <=> -2x-3=x+2=>-3x=5=>x=-5/3(chon)
2/
de A dat gtnn thi lx-2006l va l2007l dat gtnn
ma lx-2006l va l2007-xl >=0
=> gtnn cua lx-2006l=0;l2007-xl=0
=> x=2006 hoac 2007
=> gtnn A=1
a)|x- 2006| -|2007- x|
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2006\right|-\left|2007-x\right|\ge\left|x-2006-2007-x\right|=4013\)
Dấu = khi \(\left(x-2006\right)\left(2007-x\right)\ge0\)
\(\Rightarrow2006\le x\le2007\)
\(\Rightarrow\begin{cases}2006\le x\le2007\\\left(x-2006\right)\left(2007-x\right)=0\end{cases}\)\(\Rightarrow\begin{cases}x=2006\\x=2007\end{cases}\)
Vậy MinB=4013 khi x=2006 hoặc x=2007
b)Ta có:\(\begin{cases}y^2\\\left|x-16\right|\end{cases}\ge0\)
\(\Rightarrow y^2+\left|x-16\right|-9\ge0-9=-9\)
\(\Rightarrow C\ge-9\)
Dấu = khi \(\begin{cases}y^2=0\\\left|x-16\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=0\end{cases}\)
Vậy MinC=-9 khi x=16 và y=0
a. B=|x- 2006| -|2007- x|
Vì |x- 2006|\(\ge\)0
|2007- x|\(\ge\)0
Suy ra:|x- 2006| -|2007- x|\(\ge\)0
Dấu = xảy ra khi x-2006=0;x=2006
2007-x=0;x=2007
Vậy Min B=0 khi x=2006;x=2007
b) C= y2 +|x-16|-9
Vì y2\(\ge\)0
|x-16|\(\ge\)0
Suy ra: y2 +|x-16|-9\(\ge\)-9
Dấu = xảy ra khi x-16=0;x=16
y2=0;y=0
Vậy Max C=-9 khi x=16;y=0
'THAM KHẢO
a,
Điều kiện: x+2≥0⇔x≥−2x+2≥0⇔x≥-2
|2x+3|=x+2|2x+3|=x+2
⇔[2x+3=x+22x+3=−x−2⇔[2x+3=x+22x+3=−x−2
⇔[x=−13x=−5⇔[x=−13x=−5
⇔⎡⎣x=−1(t/m)x=−53(t/m)⇔[x=−1(t/m)x=−53(t/m)
Vậy x∈{−1;−53}x∈{-1;-53}
b,
A=|x−2006|+|2007−x|≥|x−2006+2007−x|=|1|=1A=|x−2006|+|2007−x|≥|x−2006+2007−x|=|1|=1
Đẳng thức xảy ra ⇔(x−2006)(2007−x)≥0⇔(x−2006)(2007−x)≥0
⇔(x−2006)(x−2007)≤0⇔(x−2006)(x−2007)≤0
Vì x−2006>x−2007x−2006>x−2007
⇒{x−2006≥0x−2007≤0⇒{x−2006≥0x−2007≤0
⇔{x≥2006x≤2007⇔{x≥2006x≤2007
⇔2006≤x≤2007⇔2006≤x≤2007
Vậy Amin=1⇔2006≤x≤2007
\(A=\left|x-2006\right|+\left|x-1\right|=\left|x-2006\right|+\left|-x+1\right|\ge\left|x-2006-x+1\right|=2005\)
dấu = xảy ra khi \(\left(x-2006\right).\left(-x+1\right)\ge0\)
\(\Rightarrow1\le x\le2006\)
Vậy Min A=2015 khi và chỉ khi \(1\le x\le2006\)
\(A=|x-2006|+|x-1|=|x-2006|+|1-x|\)
\(\Rightarrow A\ge|x-2006+1-x|=|-2005|=2005\)
\(\Rightarrow minA=2005\Leftrightarrow\left(x-2006\right).\left(1-x\right)\ge0\)
\(TH1:\hept{\begin{cases}x-2006< 0\\1-x< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2006\\1< x\end{cases}}\Rightarrow\hept{\begin{cases}x< 2006\\x>1\end{cases}}\Rightarrow1< x< 2006\left(t/m\right)\)
\(TH2:\hept{\begin{cases}x-2006\ge0\\1-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2006\\1\ge x\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2006\\x\le1\end{cases}}\)(vô lý)
Vậy \(minA=2005\Leftrightarrow1< x< 2006\)
mọi người ơi giúp mình với mình sắp phải nộp rồi
ap dung bdt \(|a|+|b|\ge|a+b|\) voi \(a.b\ge0\)
thi \(A\ge|x-2016+2007-x|=|1|=1\)
vay GTNN cua A = 1 . Dat duoc khi \(\left(x-2016\right)\left(2017-x\right)\ge0\)
<=> \(2016\le x\le2017\)
chuc ban hoc tot