Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x-2019|+|x-2020|=|x-2019|+|2020-x|\geq |x-2019+2020-x|=1$
Vậy $A_{\min}=1$. Giá trị này đạt tại $(x-2019)(2020-x)\geq 0$
$\Leftrightarrow 2019\leq x\leq 2020$
1a) A = \(x^2-4x+2023=\left(x-2\right)^2+2019\)
Ta luôn có: (x - 2)2 \(\ge\)0 \(\forall\)x
=> (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x
Hay A \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra khi : (x - 2)2 = 0 => x - 2 = 0 => x = 2
Nên Amin = 2019 khi x = 2
tính gia trị biểu thức
A=\(\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}\)
Nguyễn Lê Phước Thịnh White Hold HangBich2001 Phạm Vũ Trí Dũng Nguyễn Huyền Trâm
\(P=\left(x+1\right)\left(x+5\right)\left(x-2\right)\left(x+8\right)\)
\(=\left(x^2+6x+5\right)\left(x^2+6x-16\right)\)
\(=\left(x^2+6x-16\right)^2+21\left(x^2+6x-16\right)\)
\(=\left(x^2+6x-16+\frac{21}{2}\right)^2-\frac{441}{4}\ge-\frac{441}{4}\)
\(P_{min}=-\frac{441}{4}\) khi \(x^2+6x-16+\frac{21}{2}=0\)
\(Q=\left(x^2+\frac{y^2}{4}+\frac{9}{4}+xy-3x-\frac{3}{2}y\right)+\frac{3}{4}\left(y^2-2y+1\right)+2017\)
\(Q=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(y-1\right)^2+2017\ge2017\)
\(Q_{min}=2017\) khi \(x=y=1\)
\(A=\left|x-2019\right|+\left|x-2020\right|\)
\(=\left|x+\left(-2019\right)\right|+\left|2020-x\right|\)
Ta có :
\(\left\{{}\begin{matrix}\left|x+\left(-2019\right)\right|\ge x+\left(-2019\right)\\\left|2020-x\right|\ge2020-x\end{matrix}\right.\)\(=>A\ge x+\left(-2019\right)+2020-x\)
=>\(A\ge1\)
Dấu "=" xảy ra khi
\(\left\{{}\begin{matrix}x+\left(-2019\right)\ge0\\2020-x\ge0\end{matrix}\right.\)\(=>2019\le x\le2020\)
Vậy GTNN của A=1
Khi \(2019\le x\le2020\)
\(A=\left|x-2019\right|+\left|x-2020\right|\)
\(A=\left|2019-x\right|+\left|x-2020\right|\ge\left|2019-x+x-2020\right|=\left|-1\right|=1\)
\(\Rightarrow A\ge1\)
Dấu '' = '' xảy ra
\(\)\(\Leftrightarrow\left\{{}\begin{matrix}2019-x\ge0\\x-2020\ge0\end{matrix}\right.\)
\(\Leftrightarrow2019\le x\le2020\)
Vậy Min A = 1 \(\Leftrightarrow2019\le x\le2020\)