Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xem thêm tại đây.
Câu hỏi của Trương quang huy hoàng - Toán lớp 9 | Học trực tuyến
Lời giải:
Gọi biểu thức đã cho là $P$. Áp dụng BĐT Cauchy-Schwarz:
\(P+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{c+a-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)
\(=\frac{2(a+b+c)}{b+c-a}+\frac{\frac{9}{2}(a+b+c)}{c+a-b}+\frac{8(a+b+c)}{a+b-c}\)
\(=(a+b+c)\left(\frac{2}{b+c-a}+\frac{\frac{9}{2}}{c+a-b}+\frac{8}{a+b-c}\right)\)
\(\geq (a+b+c).\frac{(\sqrt{2}+\sqrt{\frac{9}{2}}+\sqrt{8})^2}{b+c-a+c+a-b+a+b-c}=\frac{81}{2}\)
\(\Rightarrow P\geq \frac{81}{2}-\frac{29}{2}=26\) (đpcm)
Đặt \(\hept{\begin{cases}b+c-a=2x\\c+a-b=2y\\a+b-c=2z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=y+z\\b=x+z\\c=x+y\end{cases}}\)
\(\Rightarrow P=\frac{1}{2}.\left(\frac{4\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{y}+\frac{16\left(x+y\right)}{z}\right)\)
\(=\frac{1}{2}.\left(\left(\frac{4y}{x}+\frac{9x}{y}\right)+\left(\frac{4z}{x}+\frac{16x}{z}\right)+\left(\frac{9z}{y}+\frac{16y}{z}\right)\right)\)
\(\ge\frac{1}{2}.\left(2.2.3+2.2.4+2.3.4\right)=26\)
Đặt: \(\hept{\begin{cases}b+c-a=2x\\c+a-b=2y\\a+b-c=2z\end{cases}}\Rightarrow x;y;z>0\text{ và }\hept{\begin{cases}a=y+z\\b=z+x\\c=x+y\end{cases}}\)
Áp dụng AM - GM, ta có:
\(2P=4\left(\frac{y+z}{x}\right)+9\left(\frac{x+z}{y}\right)+16\left(\frac{x+y}{z}\right)\)
\(=\left(4\frac{y}{x}+9\frac{x}{y}\right)+\left(4\frac{z}{x}+16\frac{x}{z}\right)+\left(9\frac{x}{y}+16\frac{x}{z}\right)\ge12+16+24=52\Rightarrow P\ge26\)
\(Đ\text{T}\Leftrightarrow3z=4y=6x\)
đề sai ở mẫu cuối nhé
đặt b + c - a = x ; a + c - b = y ; a + b - c = z
\(\Rightarrow a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)
\(\Rightarrow P=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{9z}{2y}+\frac{8y}{z}\)
\(\ge6+8+12=26\)
Lời giải:
Ta có:
\(A=\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)
\(\Rightarrow A+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{a+c-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)
\(A+\frac{29}{2}=\frac{2(a+b+c)}{b+c-a}+\frac{\frac{9}{2}(a+b+c)}{a+c-b}+\frac{8(a+b+c)}{a+b-c}\)
\(A+\frac{29}{2}=(a+b+c)\left(\frac{2}{b+c-a}+\frac{\frac{9}{2}}{a+c-b}+\frac{8}{a+b-c}\right)\)
\(\geq (a+b+c).\frac{(\sqrt{2}+\sqrt{\frac{9}{2}}+\sqrt{8})^2}{b+c-a+a+c-b+a+b-c}=\frac{81}{2}\)
(Áp dụng BĐT S.Vac -xơ)
\(\Rightarrow A\geq 26\)
Vậy \(A_{\min}=26\)