K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

\(A=2x^2+2x+1=x^2+x^2+x+x+\frac{1}{4}+\frac{1}{4}+\frac{1}{2}\)

\(A=\left(x^2+x+\frac{1}{4}\right)+\left(x^2+x+\frac{1}{4}\right)+\frac{1}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)

\(A=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)

Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\forall x\in R\)nên \(Min\left(A\right)=\frac{1}{2}\)

\(\Rightarrow2\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

Vậy giá trị nhỏ nhất của \(A=\frac{1}{2}\equiv x=-\frac{1}{2}\)

\(\equiv\)là tại nhé 

k cho minh nha

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

16 tháng 7 2019

GTNN=1

\(2x^2+2x+1=\frac{2\left(2x^2+2x+1\right)}{2}\)

\(=\frac{4x^2+4x+2}{2}\)

\(=\frac{\left(2x+1\right)^2+1}{2}\)

Để \(2x^2+2x+1\)nhỏ nhất thì \(\left(2x+1\right)^2+1\)nhỏ nhất 

\(\left(2x+1\right)^2+1\ge1\)

Dấu bằng xảy ra khi \(x=-\frac{1}{2}\)

Vậy GTNN của biểu thức là \(\frac{1}{2}\)khi  \(x=-\frac{1}{2}\)

24 tháng 10 2020

GNDTT????

24 tháng 10 2020

( 2x - 1 )2 + 2( 2x + 1 )( 4x2 - 2x + 1 ) - 4( 4x3 - 3 )

= 4x2 - 4x + 1 + 2( 8x3 + 1 ) - 16x3 + 12

= 4x2 - 4x + 13 + 16x3 + 2 - 16x3

= 4x2 - 4x + 15

= ( 4x2 - 4x + 1 ) + 14

= ( 2x - 1 )2 + 14 ≥ 14 ∀ x

Dấu "=" xảy ra khi x = 1/2

=> GTNN của biểu thức = 14 <=> x = 1/2

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

6 tháng 10 2019

a)x2-2x+m= (x-1)2+m-1 \(\ge m-1\) Min =2 => m-1 = 2 <=> m = 3

b) = 4x2-2x+6x+m= 4x2+4x+m = (2x+1)2+m-1 \(\ge m-1\) Min=1998 <=> m-1 = 1998 <=> m = 1999

25 tháng 3 2018

\(\left(x^2-2x\right)\left(x^2-2x+2\right)=\left(x^2-2x+1-1\right)\left(x^2-2x+1+1\right).\)

\(=\left[\left(x-1\right)^2-1\right]\left[\left(x-1\right)^2+1\right]\)

\(=\left(x-1\right)^4-1\ge0-1=-1\)

Vậy GTNN của biểu thức là -1

NM
10 tháng 10 2021

ta có:

undefined

ssssssssssssssssssssss

23 tháng 7 2019

a) Ta có : \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Lại có : \(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(x-\frac{1}{2}=0=>x=\frac{1}{2}\)

Vậy biểu thức có giá trị nhỏ nhất là \(\frac{3}{4}\) khi \(x=\frac{1}{2}\)