K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2015

đúng rùi đó Nguyễn Văn Tân

1 tháng 11 2015

rồi đó

NM
10 tháng 10 2021

ta có:

undefined

14 tháng 10 2015

rất tiếc em mới học lớp 6

20 tháng 1 2022

dhgxkkkkkkkkkkkkkkkkkkkkk

20 tháng 1 2022

jnymrjd,5

NV
12 tháng 12 2020

\(A=\dfrac{3x^2-2xy}{x^2+2xy+y^2}=\dfrac{15x^2-10xy}{5\left(x^2+2xy+y^2\right)}=\dfrac{-\left(x^2+2xy+y^2\right)+16x^2-8xy+y^2}{5\left(x^2+2xy+y^2\right)}\)

\(A=-\dfrac{1}{5}+\dfrac{\left(4x-y\right)^2}{5\left(x+y\right)^2}\ge-\dfrac{1}{5}\)

\(A_{min}=-\dfrac{1}{5}\) khi \(4x-y=0\)

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

AH
Akai Haruma
Giáo viên
7 tháng 9

1.

$D=x^3+y^3+2xy=(x+y)^3-3xy(x+y)+2xy=2^3-3xy.2+2xy$

$=8-6xy+2xy=8-4xy=8-4x(2-x)=8-8x+4x^2=(4x^2-8x+4)+4$

$=(2x-2)^2+4\geq 4$

Vậy $D_{\min}=4$. Giá trị này đạt tại $2x-2=0\Leftrightarrow x=1$

$y=2-x=2-1=1$

AH
Akai Haruma
Giáo viên
7 tháng 9

2.

$A=(2x+1)^2-(3x-2)^2+x-11=4x^2+4x+1-(9x^2-12x+4)+x-11$

$=4x^2+4x+1-9x^2+12x-4+x-11$

$=-5x^2+17x-14$

$-A=5x^2-17x+14=5(x^2-3,4x+1,7^2)-0,45=5(x-1,7)^2-0,45\geq -0,45$

$\Rightarrow A\leq 0,45$

Vâ $A_{\max}=0,45$

Giá trị này đạt tại $x-1,7=0\Leftrightarrow x=1,7$