Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\)
Ta có \(\left(x+\frac{4}{7}\right)^{24}\ge0\forall x\Rightarrow\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\ge\frac{-12}{293}\)
Đẳng thức xảy ra <=> x + 4/7 = 0 => x = -4/7
=> MinA = -12/293 <=> x = -4/7
\(B=-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)^{422}+5,98\)
Ta có \(\hept{\begin{cases}-\left(x+\frac{1}{6}\right)^{26}\le0\forall x\\-\left(x+y+\frac{3}{8}\right)^{442}\le0\forall x,y\end{cases}}\Rightarrow-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)+5,98\le5,98\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{6}=0\\x+y+\frac{3}{8}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{6}\\y=-\frac{5}{24}\end{cases}}\)
=> MaxB = 5, 98 <=> x = -1/6 ; y = -5/24
a) Vì : \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)
Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)
b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy....
Vì | x - 0,4 | lớn hơn hoặc bằng 0 với mọi x
=> | x - 0,4 | + 2,5 lớn hơn hoặc bằng 2,5
Dấu "=" xảy ra <=> | x - 0,4 | = 0 <=> x = 0,4
Vậy minA = 2,5 <=> x = 0,4
Vì \(\left|2x-\frac{1}{2}\right|\ge0\forall x\)\(\Rightarrow-\frac{3}{2}+\left|2x-\frac{1}{2}\right|\ge-\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-\frac{1}{2}\right|=0\Leftrightarrow2x=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
Vậy minB = - 3/2 <=> x = 1/4
+ Ta có: \(A=\left|x-0,4\right|+2,5\)
Vì \(\left|x-0,4\right|\ge0\forall x\)\(\Rightarrow\)\(\left|x-0,4\right|+2,5\ge2,5\forall x\)
\(\Rightarrow\)\(A_{min}=2,5\)
Dấu "=" xảy ra khi và chỉ khi: \(\left|x-0,4\right|=0\)
\(\Leftrightarrow x-0,4=0\)
\(\Leftrightarrow x=0,4\)
Vậy \(A_{min}=2,5\)\(\Leftrightarrow\)\(x=0,4\)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
a) Ta có: 3|x - 14| \(\ge\)0 \(\forall\)x
=> 3|x - 14| + 4 \(\ge\)4 \(\forall\)x
=> \(\frac{6}{3\left|x-14\right|+4}\le\frac{3}{2}\forall x\)
Dấu "=" xảy ra <=> x - 14 = 0 <=> x = 14
Vậy MaxA = 3/2 <=> x = 14
b) Mình có: |2x + 6| = \(\orbr{\begin{cases}2x+6\\-2x-6\end{cases}}\)\(\Rightarrow\)BMin = - 2x- 6 + 2 + 2x = -4 khi x \(\le\)-3
\(C=\frac{6}{\left|x\right|-3}\)
Ta có:
\(6>0\)
\(\Rightarrow\frac{6}{\left|x\right|-3}\ge1\forall x\inℤ\)
\(\Rightarrow C\ge1\forall x\inℤ\)
Dấu "=" xảy ra:
\(\Leftrightarrow\left|x-3\right|=1\)
\(\Leftrightarrow\left|x\right|=4\)
\(\Leftrightarrow x=\pm4\)
Vậy C nhỏ nhất khi C = 1 tại x = \(\pm4\)
Chúc em học tốt nhé!
Lưu ý: |x| - 3 là mẫu số thì luôn luôn khác 0 nên có nhiều trường hợp nhé!