Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x^2+4-x^2+\dfrac{3}{2}=-3+4x^2-\dfrac{4}{3}x^2+1\)
\(\Leftrightarrow x^2+\dfrac{11}{2}=\dfrac{8}{3}x^2-2\)
\(\Leftrightarrow x^2\cdot\dfrac{-5}{3}=-\dfrac{15}{2}\)
\(\Leftrightarrow x^2=\dfrac{9}{2}\)
hay \(x\in\left\{\dfrac{3\sqrt{2}}{2};-\dfrac{3\sqrt{2}}{2}\right\}\)
b: \(\Leftrightarrow\left|x\right|-4-2+\left|x\right|-\dfrac{1}{3}\left|x\right|+5=0\)
\(\Leftrightarrow\left|x\right|\cdot\dfrac{5}{3}=1\)
hay \(x\in\left\{\dfrac{3}{5};-\dfrac{3}{5}\right\}\)
3(x-2)-4(2x+1)-5(2x+3)=50
<=>(3x-6)-(8x+4)-(10x+15)=50
<=>3x-6-8x-4-10x-15=50
<=>(3x-8x-10x)+(-6-4-15)=50
<=>-15x-25=50
<=>-15x=75
<=>x=-5
\(3\frac{1}{2}:\left(4-\frac{1}{3}\left|2x+1\right|\right)=\frac{21}{22}\)
<=>\(4-\frac{1}{3}\left|2x+1\right|=\frac{7}{2}:\frac{21}{22}=\frac{11}{3}\)
<=>\(\frac{1}{3}\left|2x+1\right|=4-\frac{11}{3}=\frac{1}{3}\)
<=>\(\left|2x+1\right|=1\)
<=>2x+1=1 hoặc 2x+1=-1
<=>2x=0 hoặc 2x=-2
<=>x=0 hoặc x=-2
Vậy......................
A=n-2/n+5=n+5-7/n+5=1-7/n+5 để A nhỏ nhất thì n+5 lớn nhất suy ra n=9
nếu n =9 thì n-2/n+5=9-2/9+5=7/14=1/2
Ta có: |a-x|+|b-x|+|x-c|+|x-d|>=|a-x+b-x+x-c+x-d|=|a+b-c-d|=|(a-c)+(b-d)|
mà a<c;b<d nên |(a-c)+(b-d)|=-(a-c)-(b-d)
Vậy GTNN của |a-x|+|b-x|+|x-c|+|x-d| là -(a-c)-(b-d)
Ta có:
\(A=\left|x-4\right|+\left|x-2020\right|=\left|x-4\right|+\left|2020-x\right|\ge x-4+2020-x=2016\)
Dấu "=" xảy ra <=> x - 4 \(\ge0\)
và 2020 - x \(\ge0\)
<=> \(x\ge4\) và \(x\le2020\)
\(\Leftrightarrow4\le x\le2020\)
Vậy A đạt GTNN là 2016 \(\Leftrightarrow4\le x\le2020\)
a. 1,7
b.3/7