Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+3x+4\right)^2=\left(x^2+3x+\frac{9}{4}+\frac{7}{4}\right)^2\)
\(=[\left(x+\frac{3}{2}\right)^2+\frac{7}{4}]^2\ge\left(\frac{7}{4}\right)^2=\frac{49}{16}\)
Vay GTNN của A là \(\frac{49}{18}\) đạt được khi x= \(-\frac{3}{2}\)
\(A=\frac{x^2+4x+7}{x-3}=\frac{x\left(x-3\right)+3x+4x+7}{x-3}=\frac{x\left(x-3\right)+7\left(x-3\right)+21+7}{x-3}\)\(=\frac{\left(x-3\right)\left(x+7\right)+28}{x-3}=x+7+\frac{28}{x-3}\)
(x-3) phải thuộc ước của 28=[+-1,+-2,+,4,+-7,+-14,+-28}
x={-25,-11,-4,1,2,4,5,7,10,17,31} nhiêu quá
\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy dấu \("="\) không xảy ra