Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+4x+6\)
\(=\left(2x\right)^2+2.2x.1+1+5\)
\(=\left(2x+1\right)^2+5\ge5\)
\(Min=5\Leftrightarrow2x+1=0\Rightarrow x=\frac{-1}{2}\)
\(x^2+6x+11\)
\(=x^2+2.x.3+9+2\)
\(=\left(x+3\right)^2+2\ge2\)
\(Min=2\Leftrightarrow x+3=0\Rightarrow x-3\)
\(x^2-3x+1\)
\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\le\frac{-5}{4}\)
\(MIn=\frac{-5}{4}\Leftrightarrow x+\frac{3}{2}=0\Rightarrow x=\frac{-3}{2}\)
B = 4x2 + 4x - 6 = (2x)2 + 2.2.x + 1 - 7 = (2x + 1)2 - 7 \(\ge\)-7
Vậy MinB = -7 khi 2x + 1 = 0 => x = -1/2
C = x2 + 6x + 11 = x2 + 2.3.x + 9 + 2 = (x + 3)2 + 2 \(\ge\)2
Vậy MinC = 2 khi x + 3 = 0 => x = -3
D = x2 - 3x + 1 \(=x^2-2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Vậy MinD = -5/4 khi x - 3/2 = 0 => x = 3/2
\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)
vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)
\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)
Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)
\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)
vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)
\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)
Dấu "=" xảy ra khi và chỉ khi
\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)
\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)
\(a,-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+1}{6}=\dfrac{8}{3}\)
\(\Rightarrow-\dfrac{6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{-6x+8x+3x+3+4x+2}{12}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{9x+5}{12}=\dfrac{8}{3}\)
\(\Rightarrow27x+15=96\)
\(\Rightarrow27x=81\)
\(\Rightarrow x=3\left(tm\right)\)
\(b,\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3+5-2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow2x+1=13\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\left(tm\right)\)
#Toru
a) \(-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+2}{6}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{-6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{4\cdot8}{12}\)
\(\Rightarrow-6x+8x+3x+3+4x+2=32\)
\(\Rightarrow9x+5=32\)
\(\Rightarrow9x=32-5\)
\(\Rightarrow9x=27\)
\(\Rightarrow x=\dfrac{27}{9}\)
\(\Rightarrow x=3\)
b) \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\) (ĐK: \(x\ne-\dfrac{1}{2}\))
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow2x+1=13\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=\dfrac{12}{2}\)
\(\Rightarrow x=6\left(tm\right)\)
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
a/ Ta có:
\(A=x^2-6x+11\)
\(A=x\cdot x-3x-3x+3\cdot3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\)
Nên GTNN của \(\left(x-3\right)^2\)là 0
=> \(A_{min}=0+2=2\)
mình chỉ biết a. thôi
a) ta có : \(A=x^2-6x+11\)
\(A=x.x-3x-3x+3.3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
vì \(\left(x-3\right)^2\ge0\)
nên GTNN của \(\left(x-3\right)^2\)là \(0\)
\(\Rightarrow\)\(A_{min}\)\(=0+2=2\)
\(A=\dfrac{1}{2}+\left|2x-1\right|\ge\dfrac{1}{2}\forall x\)
\(minA=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{\left|x\right|+2007}{2008}\ge\dfrac{0+2007}{2008}=\dfrac{2007}{2008}\)
\(minB=\dfrac{2007}{2008}\Leftrightarrow x=0\)
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
2:
a: =-(x^2-12x-20)
=-(x^2-12x+36-56)
=-(x-6)^2+56<=56
Dấu = xảy ra khi x=6
b: =-(x^2+6x-7)
=-(x^2+6x+9-16)
=-(x+3)^2+16<=16
Dấu = xảy ra khi x=-3
c: =-(x^2-x-1)
=-(x^2-x+1/4-5/4)
=-(x-1/2)^2+5/4<=5/4
Dấu = xảy ra khi x=1/2
1)
a) \(A=x^2+4x+17\)
\(A=x^2+4x+4+13\)
\(A=\left(x+2\right)^2+13\)
Mà: \(\left(x+2\right)^2\ge0\) nên \(A=\left(x+2\right)^2+13\ge13\)
Dấu "=" xảy ra: \(\left(x+2\right)^2+13=13\Leftrightarrow x=-2\)
Vậy: \(A_{min}=13\) khi \(x=-2\)
b) \(B=x^2-8x+100\)
\(B=x^2-8x+16+84\)
\(B=\left(x-4\right)^2+84\)
Mà: \(\left(x-4\right)^2\ge0\) nên: \(A=\left(x-4\right)^2+84\ge84\)
Dấu "=" xảy ra: \(\left(x-4\right)^2+84=84\Leftrightarrow x=4\)
Vậy: \(B_{min}=84\) khi \(x=4\)
c) \(C=x^2+x+5\)
\(C=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)
\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)
Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu "=" xảy ra: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(A_{min}=\dfrac{19}{4}\) khi \(x=-\dfrac{1}{2}\)
x^2-6x+11=(x-3)^2+2>=2
=>6/x^2-6x+11<=3
=>B>=-3
Dấu = xảy ra khi x=3