K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2020

GTLN chứ ? 

B = -2x2 + 10x - 8

= -2( x2 - 5/2x + 25/4 ) + 9/2

= -2( x - 5/2 )2 + 9/2 ≤ 9/2 ∀ x

Dấu "=" xảy ra khi x = 5/2

=> MaxB = 9/2 <=> x = 5/2

3 tháng 11 2020

Đề phải là tìm GTLN nhé

Ta có: 

\(B=-2x^2+10x-8\)

\(B=-2\left(x^2-5x+\frac{25}{4}\right)+\frac{9}{2}\)

\(B=-2\left(x-\frac{5}{2}\right)^2+\frac{9}{2}\le\frac{9}{2}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-2\left(x-\frac{5}{2}\right)^2=0\Rightarrow x=\frac{5}{2}\)

Vậy Max(B) = 9/2 khi x = 5/2

21 tháng 5 2018

Đề bài thiếu dữ kiện bạn ơi sao chỉ có ẩn x ko vậy ??????????

21 tháng 5 2018

\(B=2x^2+10x=2x^2+10x+\frac{25}{2}-\frac{25}{2}=2\left(x^2+5x+\frac{25}{4}\right)-\frac{25}{2}\)

\(=2\left(x^2+2\cdot\frac{5}{2}x+\left(\frac{5}{2}\right)^2\right)-\frac{25}{2}=2\left(x+\frac{5}{2}\right)^2-\frac{25}{2}\)

vì \(2\left(x+\frac{5}{2}\right)^2>=0;-\frac{25}{2}=-\frac{25}{2}\Rightarrow2\left(x+\frac{5}{2}\right)^2-\frac{25}{2}>=-\frac{25}{2}\)

dấu = xảy ra khi \(2\left(x+\frac{5}{2}\right)^2=0\Rightarrow x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)

vậy min của B là \(-\frac{25}{2}\)tại x=\(-\frac{5}{2}\)

17 tháng 8 2016

tách hđt #@

\(B=2x^2+10x-1\)

\(\Rightarrow2B=\left(4x^2+20x+25\right)-27\)

\(\Rightarrow2B=\left(2x+5\right)^2-27\ge-27\forall x\)

\(\Rightarrow B\ge-\frac{27}{2}\)

Dấu bằng xảy ra khi: \(\left(2x+5\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)

28 tháng 1 2020

a) Ta có : \(A=-6x+x^2+11\)

\(\Rightarrow A=\left(x^2-6x+9\right)+2\)

\(\Rightarrow A=\left(x-3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy \(minA=2\Leftrightarrow x=3\)

b) \(B=-1+2x^x+10x\)

\(\Rightarrow\)Tớ đang thắc mắc cái chỗ 2xx :)))

12 tháng 6 2018

giải câu B trước nha -_- 

Ta có : 

\(B=-5x^2-4x+1\)

\(5B=-25x^2-20x+5\)

\(5B=9-25x^2-20x-4\)

\(5B=9-\left(25x^2+20x+4\right)\)

\(5B=9-\left(5x+2\right)^2\le9\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(5x+2\right)^2=0\)

\(\Leftrightarrow\)\(5x+2=0\)

\(\Leftrightarrow\)\(5x=-2\)

\(\Leftrightarrow\)\(x=\frac{-2}{5}\)

Mà \(5B\le9\)\(\Rightarrow\)\(B\le\frac{9}{5}\)

Vậy GTNN của \(B\) là \(\frac{9}{5}\) khi \(x=\frac{-2}{5}\)

Chúc bạn học tốt ~ 

12 tháng 6 2018

Câu B với câu C mình ko tìm GTNN được -_- 

Ta có : 

\(C=-2x^2+10x+3\)

\(-2C=4x^2-20x-6\)

\(-2C=\left(4x^2-20x+100\right)-106\)

\(-2C=\left(2x-10\right)^2-106\ge-106\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-10\right)^2=0\)

\(\Leftrightarrow\)\(2x-10=0\)

\(\Leftrightarrow\)\(2x=10\)

\(\Leftrightarrow\)\(x=5\)

Mà \(-2C\ge-106\)\(\Rightarrow\)\(C\le53\)

Vậy GTLN của \(C\) là \(53\) khi \(x=5\)

Chúc bạn học tốt ~ 

9 tháng 7 2017

tìm GTNN:

a) \(x^2-2x+5\)

\(=x^2-2x+4+1\)

\(=\left(x-2\right)^2+1\ge1\)

vậy GTNN của biểu thức trên =1 khi x=2

9 tháng 7 2017

a) Ta có : x2 - 2x + 5

= x2 - 2x + 1 + 4

= (x - 1)2 + 4

Mà (x - 1)2 \(\ge0\forall x\)

=> (x - 1)2 + 4 \(\ge4\forall x\)

Vậy GTNN của biểu thức là 4 khi x = 1

a: \(A=x^2-2x+1+y^2+4y+4+3\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\)

Dấu '=' xảy ra khi x=1 và y=-2

b: \(B=x^2-4x+4+y^2-8y+16-14\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14>=-14\)

Dấu '=' xảy ra khi x=2 và y=4

23 tháng 7 2016

A=\(x^2+8x+20=x^2+8x+16+4=\left(x+4\right)^2+4\)

vì \(\left(x+4\right)^2\ge0\) với mọi x => \(\left(x+4\right)^2+4\ge4\) với mọi x

Amin=4 khi (x+4)^2=0 => x=-4

23 tháng 7 2016

B=\(2x^2+10x+20=2\left(x^2+5x+10\right)=2\left(x^2+5x+\frac{25}{4}+\frac{15}{4}\right)\)

\(=2\left(x+\frac{5}{2}\right)^2+\frac{15}{2}\)

vì \(2\left(x+\frac{5}{2}\right)^2\ge o\) với mọi x

=>\(2\left(x+\frac{5}{2}\right)^2+\frac{15}{2}\ge\frac{15}{2}\) với mọi x

Bmin=15/2 khi x=-5/2