Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(=\left(9x^2-25y^2\right)-\left(6x-10y\right)=\left(3x-5y\right)\left(3x+5y\right)-2\left(3x-5y\right)=\left(3x-5y\right)\left(3x+5y-2\right)\)
2) \(=9x^2y^2-\left(x^2-2xy+y^2\right)=9x^2y^2-\left(x-y\right)^2=\left(3xy-x+y\right)\left(3xy+x-y\right)\)
a: \(\left(x^3-x^2+x\right)\left(121-25y^2-10y\right)-\left(x^3-x^2+x\right)-\left(121-25y^2-10y\right)+1\)
\(=\left(x^3-x^2+x\right)\left(120-25y^2-10y\right)-\left(120-25y^2-10y\right)\)
\(=\left(120-25y^2-10y\right)\left(x^3-x^2+x-1\right)\)
\(=-\left[\left(25y^2+10y+1\right)-121\right]\left[x^2\left(x-1\right)+\left(x-1\right)\right]\)
\(=-\left(5y-10\right)\left(5y-12\right)\left(x-1\right)\left(x^2+1\right)\)
\(=-5\left(y-2\right)\left(5y-12\right)\left(x-1\right)\left(x^2+1\right)\)
b: \(x^4-14x^3+71x^2-154x+120\)
\(=x^4-5x^3-9x^3+45x^2+26x^2-130x-24x+120\)
\(=\left(x-5\right)\left(x^3-9x^2+26x-24\right)\)
\(=\left(x-5\right)\left(x^3-4x^2-5x^2+20x+6x-24\right)\)
\(=\left(x-5\right)\left(x-4\right)\left(x^2-5x+6\right)\)
\(=\left(x-5\right)\left(x-4\right)\left(x-3\right)\left(x-2\right)\)
Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)
\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)
Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)
\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)
Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)
\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)
Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)
\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Sửa đề: Tìm GTLN của P
P = 27 - 6x - 9x²
= -(9x² + 6x + 1 - 28)
= -[(3x + 1)² - 28]
= -(3x + 1)² + 28
Do (3x + 1)² ≥ 0 với mọi x
⇒ -(3x + 1)² ≤ 0 với mọi x
⇒ -(3x + 1)² + 28 ≤ 28 với mọi x
Vậy GTLN của P là 28 khi x = -1/3
\(a,64x^2-\left(8a+b\right)^2\)
\(=\left(8x\right)^2-\left(8a+b\right)^2\)
\(=\left[8x-\left(8a+b\right)\right]\left(8x+8a+b\right)\)
\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)
\(b,\dfrac{12}{5}x^2y^2-9x^2-\dfrac{4}{25}y^2\)
\(=-\left(9x^2-\dfrac{12}{5}x^2y^2+\dfrac{4}{25}y^2\right)\)
\(=-\left[\left(3x\right)^2-2.3.\dfrac{2}{5}x^2y^2+\left(\dfrac{2}{5}y\right)^2\right]\)
\(=-\left(3x-\dfrac{2}{5}y\right)^2\)
\(B=9x^2+25y^2-6x+10y-7\)
\(B=\left(9x^2-6x+1\right)+\left(25y^2+10y+1\right)-9\)
\(B=\left(3x-1\right)^2+\left(5y+1\right)^2-9\ge-9\)
Vậy GTNN của B là -9 khi x = \(\frac{1}{3}\); y = \(-\frac{1}{5}\)