Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B>=\left|3x-5+2-3x\right|=3\)
Dấu = xảy ra khi (3x-5)(3x-2)<=0
=>2/3<=x<=5/3
\(C=\left|2x-20\right|-\left|2x+3\right|\le\left|2x-20-2x-3\right|=23\)
Dấu = xảy ra khi (2x-20)(2x+3)<=0
=>-3/2<=x<=10
Ta có: A = 25 - |3x - 6| - |3x + 8|
A = 25 - (|6 - 3x| + |3x + 8|) < = 25 - |6 - 3x + 3x + 8| = 25 - |14| = 25 - 14 = 11
Dấu "=" xảy ra <=> (3x - 6)(3x + 8) = 0
=> -8/3 \(\le\)x \(\le\)2
Vậy Max của A = 11 tại \(-\frac{8}{3}\le x\le2\)
Ta có: B = |2x - 5| - |2x - 11| + 3 > = |2x - 5 - 2x + 11| + 3 = |6| + 3 = 6 + 3 = 9
Dấu "=" xảy ra <=> (2x - 5)(2x - 11) = 0
=> \(\frac{5}{2}\le x\le\frac{11}{2}\)
Vậy Min của B = 9 tại \(\frac{5}{2}\le x\le\frac{11}{2}\)
a, \(A=\left|2x-5\right|+\left|2x-12\right|=\left|2x-5\right|+\left|12-2x\right|\ge\left|2x-5+12-2x\right|=7\)
Dấu "=" xảy ra khi \(\left(2x-5\right)\left(12-2x\right)\ge0\Leftrightarrow\frac{5}{2}\le x\le6\)
Vậy Amin=7 khi 5/2 <= x <= 6
b, \(B=\left|3x+6\right|+\left|3x-8\right|=\left|3x+6\right|+\left|8-3x\right|\ge\left|3x+6+8-3x\right|=14\)
Dấu "=" xảy ra khi \(\left(3x+6\right)\left(8-3x\right)\ge0\Leftrightarrow-2\le x\le\frac{8}{3}\)
Vậy...
c, \(C=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=\left(\left|x-1\right|+\left|3-x\right|\right)+\left(\left|x-2\right|+\left|4-x\right|\right)\ge\left|x-1+3-x\right|+\left|x-2+4-x\right|=2+2=4\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Leftrightarrow}2\le x\le3}\)
Vậy...
+) \(A=\left|3x-\frac{1}{2}\right|+\frac{1}{5}\ge\frac{1}{5}\)
Dấu bằng xảy ra
\(\Leftrightarrow3x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy GTNN của biểu thức \(A=\frac{1}{5}\)\(\Leftrightarrow x=\frac{1}{6}\)
+) \(B=\frac{4}{5}-\left|2x-\frac{1}{3}\right|\le\frac{4}{5}\)
Dấu bằng xảy ra
\(\Leftrightarrow2x-\frac{1}{3}=0\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy GTLN của biểu thức \(B=\frac{4}{5}\)\(\Leftrightarrow x=\frac{1}{6}\)
Ta có : |3x - 20| - |3x - 10| \(\le\left|3x-20-3x+10\right|=\left|-10\right|=10\)
Vậy GTLN = 10 khi x = 0
a, Ta có: -4x2+4x-1=-(4x2-4x+1)<=>-((2x)2-2.2x+1)=-(2x-1)2
A = -4x2 + 4x - 1
= -( 4x2 - 4x + 1 )
= -( 2x - 1 )2 ≤ 0 ∀ x
Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2
=> MaxA = 0 <=> x = 1/2
B = 3x2 + 2x + 5
= 3( x2 + 2/3x + 1/9 ) + 14/3
= 3( x + 1/3 )2 + 14/3 ≥ 14/3 ∀ x
Đẳng thức xảy ra <=> x + 1/3 = 0 => x = -1/3
=> MinB = 14/3 <=> x = -1/3
Câu 1 :
\(B=\left|3x-5\right|+\left|2-3x\right|\ge\left|3x-5+2-3x\right|=\left|-3\right|=3\)
Dấu "=" xảy ra
TH1: \(\Leftrightarrow\hept{\begin{cases}3x-5>0\\2-3x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{3}\\x< \frac{2}{3}\end{cases}\Rightarrow}\frac{5}{3}< x< \frac{2}{3}\left(\text{loại}\right)}\)
TH2: \(\Leftrightarrow\hept{\begin{cases}3x-5< 0\\2-3x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{3}\\x>\frac{2}{3}\end{cases}\Rightarrow}\frac{2}{3}< x< \frac{5}{3}\left(\text{thỏa mãn}\right)}\)
Vậy Bmin = 3 <=> 2/3 < x < 5/3
Câu 2 :
\(C=\left|2x-20\right|-\left|2x+3\right|\le\left|2x-20-2x-3\right|=\left|-23\right|=23\)
Dấu "=" xảy ra
TH1 : \(\Leftrightarrow\hept{\begin{cases}2x-20>0\\2x+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>10\\x>\frac{-3}{2}\end{cases}}\Rightarrow x>10\)
TH2: \(\Leftrightarrow\hept{\begin{cases}2x-20< 0\\2x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 10\\x< \frac{-3}{2}\end{cases}\Rightarrow}}x< \frac{-3}{2}\)
Vậy Cmax = 23 <=> 2 t/h ( ko chắc )
\(B=\left|3x-5\right|+\left|2-3x\right|\ge\left|3x-5+2-3x\right|=\left|-5+2\right|=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3x-5\right)\left(2-3x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}3x-5\ge0\\2-3x\le0\end{cases}}\) hoặc \(\hept{\begin{cases}3x-5\le0\\2-3x\ge0\end{cases}}\)
Giải ra ta được: \(\Leftrightarrow\frac{2}{3}\le x\le\frac{5}{3}\)
Vậy Bmin = 3 khi và chỉ khi \(\frac{2}{3}\le x\le\frac{5}{3}\)
\(C=\left|2x-20\right|-\left|2x+3\right|\le\left|2x-20-2x-3\right|=\left|-20-3\right|=23\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}2x-20\ge2x+3\ge0\\2x-20\le2x+3\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\ge10;x\ge\frac{-3}{2}\\x\le10;x\le\frac{-3}{2}\end{cases}}\)
Vậy Cmax = 17 khi và chỉ khi ....