Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) 5–4x+1=20160
5–4x+1=1
5–4x+1=1
4x+1=5–1
4x+1=4
4x.4=4
4x=4:4
4x=1
Vì 40=1
Nên x=0
b) 2x+1.22016=22017
2x+1=22017:22016
2x+1=22017–2016
2x+1=2
2x.2=2
2x=2:2
2x=1
Vì 20=1
Nên x=0
2.
a) | x2–19 | =6
==> x2–19=6 hoặc x2–19=-6
==> x2=6+19 hoặc x2=—6+19
==> x2=25 hoặc x2=13
Ta có x2=13
==> không tìm được giá trị x
Ta có :52=25
Nên x=5
c) (x+1).(x2–4)=0
==> x+1 =0 hoặc x2–4=0
==> x=0–1 hoặc x2=0+4
==> x=-1 hoặc x2=4
Mà x2=22
==> x=2
Vậy x=—1 hoặc x=2
d) x15=x
Mình chỉ biết là x=0 hoặc x=1 thôi,cách giải mình quên rồi, xl nha
e) 5 chia hết cho x+1
==> x+1 € Ư(5)
==>x+1€{1;—1;5;—5}
Ta có
TH1: x+1=1
x=1–1
x=0
TH2: x+1=—1
x=—1–1
x=—2
TH3: x+1=5
x= 5–1
x=4
TH4: x+1=—5
x=—5 —1
x=—6
Vậy x€{0; —2;4;—6}
Nếu bạn chưa học số âm thì không cần viết vào đâu nha, bỏ luôn trường hợp 2 và 4 đi
Ta có B=\(\left|x-2\right|+\left|x-4\right|+\left|x-3\right|=\left|x-2\right|+\left|4-x\right|+\left|x-3\right|\ge\left|x-2+4-x\right|+\left|x-3\right|=2+\left|x-3\right|\ge2\)
Dấu = xảy ra <=> x=3
c) Ta có C=\(\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|=4\)
Dấu = xảy ra <=> \(2\le x\le3\)
^_^
b) Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge x-2\\\left|x-3\right|\ge0\\\left|x-4\right|=\left|4-x\right|\ge4-x\end{cases}}\)
\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge\left(x-2\right)+\left(4-x\right)\)
\(\Rightarrow B\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2\ge0\\x-3=0\\4-x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)
Vậy, MinP \(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)
P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)
P \(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)
P\(=\frac{1.51}{50.2}=\frac{51}{100}\)
a, \(\frac{x-1}{9}=\frac{8}{3}\)
\(\Rightarrow\left(x-1\right).3=8.9\)
\(\Rightarrow\left(x-1\right).3=72\)
\(\Rightarrow x-1=72:3\)
\(\Rightarrow x-1=24\)
\(\Rightarrow x=24+1\)
\(\Rightarrow x=25\)
b, \(\frac{-x}{4}=\frac{-9}{x}\)
\(\Rightarrow-x.x=-9.4\)
\(\Rightarrow-\left(x^2\right)=-36\)
\(\Rightarrow x^2=36\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
c, \(\frac{x}{4}=\frac{18}{x+1}\)
\(\Rightarrow x\left(x+1\right)=4.18\)
\(\Rightarrow x.x+x.1=72\)
\(\Rightarrow x^2+x=72\)
\(\Rightarrow x^2+x-72=0\)
\(\Rightarrow x^2+x-8^2+8=0\)
\(\Rightarrow x=8\)
a) \(A=1,7+\left|3,4-x\right|\ge1,7\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3,4-x\right|=0\Rightarrow x=3,4\)
Vậy Min(A) = 1,7 khi x = 3,4
b) \(B=\left|x+2,8\right|-3,5\ge-3,5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+2,8\right|=0\Rightarrow x=-2,8\)
Vậy Min(B) = -3,5 khi x = -2,8
c) \(C=3,7+\left|4,3-x\right|\ge3,7\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|4,3-x\right|=0\Rightarrow x=4,3\)
Vậy Min(C) = 3,7 khi x = 4,3
\(A=2.\left|x-\frac{1}{2}\right|-2019\)
Vì \(\left|x-\frac{1}{2}\right|\ge0,\forall x\)
\(\Rightarrow2.\left|x-\frac{1}{2}\right|\ge0,\forall x\)
\(\Rightarrow2.\left|x-\frac{1}{2}\right|-2019\ge-2019,\forall x\)
Dấu \("="\)xảy ra
\(\Leftrightarrow\left|x-\frac{1}{2}\right|=0\)
\(x-\frac{1}{2}=0\)
\(x=0+\frac{1}{2}\)
\(x=\frac{1}{2}\)
Vậy \(A_{min}=-2019\Leftrightarrow x=\frac{1}{2}\)
\(A=2.\left|x-\frac{1}{2}\right|-2019\)
Ta có : \(2.\left|x-\frac{1}{2}\right|\ge0\forall x\)
\(\Rightarrow2\left|x-\frac{1}{2}\right|-2019\ge-2019\)
Dấu "=" xảy ra \(\Leftrightarrow2.\left|x-\frac{1}{2}\right|=0\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy : \(A_{min}=-2019\) tại \(x=\frac{1}{2}\)
\(B=4\left|3x-2\right|+3\left|4x+1\right|-\frac{1}{3}\)
Ta có : \(4\left|3x-2\right|\ge0\forall x,3\left|4x+1\right|\ge0\forall x\)
\(\Rightarrow4\left|3x-2\right|+3\left|4x+1\right|\ge0\forall x\)
\(\Rightarrow4\left|3x-2\right|+3\left|4x+1\right|-\frac{1}{3}\ge-\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-2=0\\4x+1=0\end{cases}}\)
...
a,\(\frac{x}{\sqrt{x}+1}=\frac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\frac{1}{\sqrt{x}+1}\)
\(=\left(\sqrt{x}-1\right)+\frac{1}{\sqrt{x}-1}+2\ge2.\sqrt{\left(\sqrt{x}-1\right).\frac{1}{\sqrt{x}-1}+2}\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-1=\frac{1}{\sqrt{x}-1}\)
\(\Leftrightarrow\sqrt{x}-1=1\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\left(t/m\right)\)
Dmin = 4 <=> x=4
b,\(\frac{\sqrt{x-9}}{5x}\)
\(\sqrt{x-9}=\sqrt{\frac{\left(x-9\right).9}{9}}=\frac{1}{3}.\sqrt{\left(x-9\right).9}\le\frac{1}{3}.\frac{x-9+9}{2}=\frac{x}{2}\)
\(\Rightarrow D\le\frac{x}{\frac{6}{5x}}=\frac{x}{30x}=\frac{1}{30}\)
Dấu "=" xảy ra \(\Leftrightarrow x-9=9\Leftrightarrow x=18\)
Dmax=\(\frac{1}{30}\Leftrightarrow x=18\)
P/s : ko chắc lắm
\(a)\)\(P=\frac{x}{\sqrt{x}+1}=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}-\frac{2\sqrt{x}+2}{\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)
\(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)
\(P=\sqrt{x}+1+\frac{1}{\sqrt{x}+1}-2\ge2\sqrt{\left(\sqrt{x}+1\right).\frac{1}{\sqrt{x}+1}}-2=2-2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\sqrt{x}+1=\frac{1}{\sqrt{x}+1}\)\(\Leftrightarrow\)\(x=0\)
...