K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(B=\sqrt{x^2-8x+18}-1\)

\(=\sqrt{\left(x-4\right)^2+2}-1\)

(x-4)^2+2>=2

=>\(\sqrt{\left(x-4\right)^2+2}>=\sqrt{2}\)

=>B>=căn 2-1

Dấu = xảy ra khi x=4

a: \(D=3+\sqrt{2x^2-8x+33}\)

\(=3+\sqrt{2\left(x^2-4x+\dfrac{33}{2}\right)}\)

\(=\sqrt{2\left(x^2-4x+4\right)+25}+3\)

\(=\sqrt{2\left(x-2\right)^2+25}+3>=5+3=8\)

Dấu = xảy ra khi x=2

26 tháng 7 2023

Cứu

16 tháng 10 2015

Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b)( x2 + Y2 )

Ở đây hệ số của x là 1 nên a là 1.

Ta có: ( x + 2y )<= ( 12 + (căn2)) ( x+ ( căn 2 )2y2 )

=> 1 <= 3 ( x2 + 2y)

=> x2 + 2y>= 1/3

Ta có:

\(A=x^4+2x^3+9x^2+8x+27\)

\(\Leftrightarrow A=x^4+x^2+16+2x^3+8x+8x^2+11\)

\(\Leftrightarrow A=\left(x^2+x+4\right)^2+11\)

\(\Leftrightarrow A=\left(x^2+x+\dfrac{1}{4}+\dfrac{15}{4}\right)^2+11\)

\(\Leftrightarrow A=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\right]^2+11\)

\(\ge\left(\dfrac{15}{4}\right)^2+11=\dfrac{401}{16}\)

Vậy \(A_{min}=\dfrac{401}{16}\), đạt được khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)

28 tháng 6 2019

\(A=x^2-8x+3\)

\(=x^2-8x+16-13\)

\(=\left(x-4\right)^2-13\)

\(A_{min}=-13\Leftrightarrow\left(x-4\right)^2=0\)

\(\Rightarrow x-4=0\Leftrightarrow x=4\)

Vậy \(A_{min}=-13\Leftrightarrow x=4\)

28 tháng 6 2019

Ta có:

   A = x2 - 8x + 3 = (x2 - 8x + 16) - 13 = (x - 4)2 - 13

Ta luôn có: (x - 4)2 \(\ge\)\(\forall\)x

=> (x - 4)2 - 13 \(\ge\)-13 \(\forall\)x

hay A \(\ge\)-13 \(\forall\)x

Dấu "=" xảy ra khi : x - 4 = 0 <=> x = 4

Vậy Min A = -13 tại x = 4