\(A=x^2+y^2\) bt x+y =4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

Luôn có : \(4xy< \left(x+y\right)^2\)

\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{4^2}{4}=4\)

\(\Rightarrow-xy\ge-4\)

Có \(x+y=4\)

\(\Leftrightarrow x^2+y^2+2xy=16\)

\(\Leftrightarrow x^2+y^2=16-2xy\ge16+2\left(-4\right)=8\)

\(\Leftrightarrow A\ge8\)

Dấu " = " xảy ra  \(\Leftrightarrow x=y=2\)

5 tháng 11 2019

Có: \(A=x^2+y^2=\frac{1}{2}\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\frac{1}{2}\left(x+y\right)^2=\frac{4^2}{2}=8\)( Bunhia)

Dấu "=" xảy ra <=> x = y =2.

Hoặc

Có: \(\left(x-y\right)^2\ge0;\forall x,y\)=> \(x^2+y^2\ge2xy\Rightarrow2x^2+2y^2\ge x^2+y^2+2xy\)

=> \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

=> \(A=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=8\)( có thể áp dụng luôn )

=> Dấu "=" xảy ra <=> x = y =2/

9 tháng 10 2019

Luôn có: \(4xy\le\left(x+y\right)^2\)

<=> \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{4^2}{4}=4\)

=> \(-xy\ge-4\)

\(x+y=4\)

<=> \(x^2+y^2+2xy=16\)

<=>\(x^2+y^2=16-2xy\ge16+2\left(-4\right)=8\)

<=>A\(\ge8\)

Dấu "=" xảy ra <=>x=y=2

NV
24 tháng 10 2019

\(A\le\left|x\right|+\sqrt{2}+\left|y\right|+1=6+\sqrt{2}\)

\(A_{max}=6+\sqrt{2}\) khi \(\left\{{}\begin{matrix}x\le0\\y\le0\\\left|x\right|+\left|y\right|=5\end{matrix}\right.\)

\(A\ge\left|x+y-\sqrt{2}-1\right|\ge4-\sqrt{2}\)

\(A_{min}=4-\sqrt{2}\) khi \(\left\{{}\begin{matrix}x\ge\sqrt{2}\\y\ge1\\x+y=5\end{matrix}\right.\)

2/ \(A\ge\frac{1}{3}\left(x^2+y^2+z^2\right)^2\ge\frac{1}{3}\left(xy+yz+zx\right)^2=\frac{1}{3}\)

\(A_{min}=\frac{1}{3}\) khi \(x=y=z=\frac{1}{\sqrt{3}}\)

24 tháng 10 2019

làm thế để có dòng đầu tiên ở câu a vậy ạ?

NV
30 tháng 9 2019

\(A=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}=\frac{3\left(x^2+y^2\right)}{4xy}+\frac{x^2+y^2}{4xy}+\frac{xy}{x^2+y^2}\)

\(A\ge\frac{3\left(x^2+y^2\right)}{2\left(x^2+y^2\right)}+2\sqrt{\frac{\left(x^2+y^2\right)xy}{4xy\left(x^2+y^2\right)}}=\frac{3}{2}+1=\frac{5}{2}\)

\(A_{min}=\frac{5}{2}\) khi \(x=y\)

1 tháng 10 2019

Cách làm này hình như có chỗ chưa hợp lý

27 tháng 9 2016

Từ BĐT \(\left(x+y\right)^2\ge4xy\) ta suy ra \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)

Ta có : \(P=\frac{20}{x^2+y^2}+\frac{11}{xy}=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\ge20.\frac{4}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}\ge\frac{80}{4}+\frac{4}{4}=21\)

Dấu "=" xảy ra khi x = y = 1

Vậy Min P = 21 khi x = y = 1

11 tháng 9 2020

Ta có :

\(P=\frac{20}{x^2+y^2}+\frac{11}{xy}\)

\(=20.\left[\frac{1}{x^2+y^2}+\frac{1}{2xy}\right]+\frac{1}{xy}\)

\(\ge20\cdot\frac{4}{x^2+y^2+2xy}+\frac{4}{\left(x+y\right)^2}\)

\(\ge20\cdot\frac{4}{2^2}+\frac{4}{2^2}=21\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

Vậy \(P_{min}=21\) khi \(x=y=1\)

10 tháng 4 2017

Câu 2-Ta có x^2+y^2=5

(x+y)^2-2xy=5

Đặt x+y=S. xy=P

S^2-2P=5

P=(S^2-5)/2

Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2

Rùi tự tính

10 tháng 4 2017

Câu1

Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)

=> P<=4/3(a+b+c)=4/3

Vậy Max p =4/3 khi a=4b=16c 

bn tìm đề thi hsg tỉnh thanh hóa lớp 9 năm nào đó là thấy

bài này dài,ngại làm

đặt là được

19 tháng 7 2017

Câu hỏi của Hoàng Gia Anh Vũ - Toán lớp 9 - Học toán với OnlineMath

22 tháng 12 2015

Mình trình bày bạn xem đúng không nhé:

\(x^2+y^2=\left(x+y\right)^2-2xy\le1-2xy\)
\(\Rightarrow A\ge\frac{1}{1-2xy}+\frac{1}{2xy}\Rightarrow A\ge\frac{1}{\left(1-2xy\right)2xy}\)

Áp dụng BĐT Cauchy \(\sqrt{\left(1-2xy\right)2xy}\le\frac{1-2xy+2xy}{2}=\frac{1}{2}\Rightarrow\left(1-2xy\right)2xy\le\frac{1}{4}\)

\(A\ge4\) Vậy min A = 4 khi x + y = 1 và 1 - 2xy = 2xy tức là x = y = 1/2 bạn nhé