Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 2x2-x=0
<=>x(2x-1)=o
=>x=0 hoặc x=1/2
2.A(x)4x2-8x+5/2=4(x-1/2)2+1/2
Vì 4(x-1/2)2>=o với mọi x
nên 4(x-1/2)2+1/2>=1/2 với mọi x
Dấu "="xảy ra khi và chỉ khi x-1/2=0<=> x= 1/2
Vậy GTNN của A=1/2 khi x= 1/2
Bài 1:\(2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
Bài 2:\(A\left(x\right)=\frac{4x^2-8x+5}{2}=\frac{4\left(x^2-2x+1\right)+1}{2}=\frac{4\left(x-1\right)^2+1}{2}=2\left(x-1\right)^2+\frac{1}{2}\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2\Rightarrow A=2\left(x-1\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
=>\(A_{min}=\frac{1}{2}\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
a) 2ˣ + 2ˣ⁺³ = 72
2ˣ.(1 + 2³) = 72
2ˣ.9 = 72
2ˣ = 72 : 9
2ˣ = 8
2ˣ = 2³
x = 3
b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)
Ta có:
x - 2 = x + 1 - 3
Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ x ∈ {-4; -2; 0; 2}
Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên
c) P = |2x + 7| + 2/5
Ta có:
|2x + 7| ≥ 0 với mọi x ∈ R
|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R
Vậy GTNN của P là 2/5 khi x = -7/2
Bài giải
Ta có :\(A = | x + 1 | + | 2x + 5 | + | 2x - 8 |\)
\(A=|x+1|+(|2x+5|+|8-2x|)\ge|x+1|+|2x+5+8-2x|=|x+1|+13\ge13\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}\left(2x+5\right)\left(8-2x\right)\ge0\\\left|x+1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}-\frac{5}{2}< x< 4\\x=-1\end{cases}}\)
Vậy Min\(A= | x + 1 | + | 2x + 5 | + | 2x - 8 | = 13\) khi \(x=-1\)
\(A=\left|x+2\right|+\left|x+1\right|+\left|2x-5\right|\ge\left|x+2+x+1\right|+\left|2x-5\right|=\left|2x+3\right|+\left|5-2x\right|\)
\(\ge\left|2x+3+5-2x\right|=\left|8\right|=8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+2\right)\left(x+1\right)\ge0\left(1\right)\\\left(2x+3\right)\left(5-2x\right)\ge0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x+2\ge0\\x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\ge-1\end{cases}\Leftrightarrow}x\ge-1}\)
TH2 : \(\hept{\begin{cases}x+2\le0\\x+1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-2\\x\le-1\end{cases}\Leftrightarrow}x\le-2}\)
\(\left(2\right)\)
TH1 : \(\hept{\begin{cases}2x+3\ge0\\5-2x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{-3}{2}\\x\le\frac{5}{2}\end{cases}\Leftrightarrow}\frac{-3}{2}\le x\le\frac{5}{2}}\)
TH2 : \(\hept{\begin{cases}2x+3\le0\\5-2x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le\frac{-3}{2}\\x\ge\frac{5}{2}\end{cases}}}\) ( loại )
Vậy GTNN của \(A\) là \(8\) khi \(-1\le x\le\frac{5}{2}\)
...
cảmơn nhá