Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-2xy+6y^2-12x+3y+45\)
\(A=x^2-2x\left(y+6\right)+6y^2+3y+45\)
\(A=x^2-2x\left(y+6\right)+y^2+2.y.6+36+5y^2-9y+9\)
\(A=x^2-2x\left(y+6\right)+\left(y+6\right)^2+5\left(y^2-2.y.\frac{9}{10}+\frac{81}{100}\right)-\frac{81}{20}+9\)
\(A=\left(x-y-6\right)^2+5\left(y-\frac{9}{10}\right)^2-\frac{99}{20}\)
Ta thấy: \(\left(x-y-6\right)^2\ge0;5\left(y-\frac{9}{10}\right)^2\ge0\forall x;y\)
\(\Rightarrow A\ge-\frac{99}{20}.\)Vậy \(Min_A=-\frac{99}{20}.\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-6=0\\y-\frac{9}{10}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=6\\y=\frac{9}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{69}{10}\\y=\frac{9}{10}\end{cases}}.\)
Xin lỗi, \(Min_A=\frac{99}{20}\)nha bạn, vì \(-\frac{81}{20}+9=-\left(\frac{81}{20}-9\right)=-\left(-\frac{99}{20}\right)=\frac{99}{20}.\)
\(A=x^2-2xy-12x+6y^2+2y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+2y+45\)
\(=\left(x-\left(y+6\right)\right)^2-y^2-12y-36+6y^2+2y+45\)
\(=\left(x-y-6\right)^2+5y^2-10y+5+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Vậy \(A_{min}=4\)khi \(y=1\)và \(x=7\)
A=\(\left(x-y\right)^2-2.6.\left(x-y\right)+36+5y^2+10y+5+4\)
=\(\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
Dấu bằng xảy ra khi y=1 và x=5
2B=\(2x^2+2y^2-2xy-2x+2y+2\)
=\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
=>B\(\ge\)0
\(P=x^2-2xy+6y^2-12x+3y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+3y+45\)
\(=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+\left(5y^2-9y+9\right)\)
\(=\left(x-y-6\right)^2+5\left(y-\frac{9}{10}\right)^2+\frac{99}{20}\)
\(\ge\frac{99}{20}\) . Đẳng thức xảy ra khi y = 9/10, x = 69/10
Vậy min P = 99/20 tại x = 69/10, y = 9/10
A \(=x^2-2xy+6y^2-12x+2y+45\)
\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
Vậy giá trị nhỏ nhất của A = 4 khi :
\(\left\{{}\begin{matrix}y-1=0\\x-y-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=7\end{matrix}\right.\)
A =x2−2xy+6y2−12x+2y+45=x2−2xy+6y2−12x+2y+45
=x2+y2+36−2xy−12x+12y+5y2−10y+5+4=x2+y2+36−2xy−12x+12y+5y2−10y+5+4
=(x−y−6)2+5(y−1)2+4≥4=(x−y−6)2+5(y−1)2+4≥4
Vậy nên giá trị nhỏ nhất của A = 4 khi :
{y−1=0x−y−6=0⇔{y=1x=7
A=x2- 2xy + 6y2 - 12x + 2y + 45
A = (x2 - 2xy + y2 - 12x + 12y + 36) + (5y2 - 10y + 5) + 4
= [(x - y)2 - 12(x - y) + 6^2] + 5(y2 - 2y + 1) + 4
= (x - y - 6)2 + 5(y - 1)2 + 4
Vì (x - y - 6)2 >= 0 với mọi x, y
5(y2 - 1) >= 0 với mọi y
=> Amin = 4 <=> y = 1, x = 7
\(A=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(4y^2-12x+9\right)+35\)
\(=\left(x-y\right)^2+\left(y-1\right)^2+\left(2y-3\right)^2+35>=35\)
vậy gt A nhỏ nhất= 35 khi x=y, y=1, y=3/2
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(=\left(x^2-2xy+y^2-12x+12y+36\right)+\left(5y^2-10y+5\right)+4\)
\(=\left[\left(x-y\right)^2-12\left(x+y\right)+6^2\right]+5\left(y^2-2y+1\right)+4\)
\(=\left(x-y+6\right)^2+5\left(y-1\right)^2+4\)
Ta có: \(\left(x-y+6\right)^2\ge0\forall x,y\)
\(5\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-y+6\right)^2+5\left(y-1\right)^2+4\ge4\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow x=7,y=1\)
Vậy \(A_{MIN}=4\Leftrightarrow x=7,y=1\)
A = x2 - 2xy + 6y2 - 12x + 2y + 45
= (x2 - 2xy + y2 - 12x + 12y + 36) + (5y2 - 10y + 5) + 4
= [(x - y)2 - 12(x - y) + 6^2] + 5(y2 - 2y + 1) + 4
= (x - y - 6)2 + 5(y - 1)2 + 4
Vì (x - y - 6)2 >= 0 với mọi x, y
5(y2 - 1) >= 0 với mọi y
=> Amin = 4 <=> y = 1, x = 7