Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+3\right)\left(x-4\right)+7=x^2-x-5=\left(x^2-x+\frac{1}{4}\right)-\frac{1}{4}-5\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
"=" <=> x = 1/2
\(B=3-\left(x-1\right)\left(x-2\right)=3-\left(x^2-3x+2\right)\)
\(=3-\left(x-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+2\right)\)
\(=3+\frac{1}{4}-\left(x-\frac{3}{2}\right)^2\le\frac{13}{4}\)
Xảy ra khi x = 3/2
Câu 8:
ĐK \(\hept{\begin{cases}x\ne0\\x\ne3\end{cases}}\)
\(A=\frac{x^2}{\left(x-3\right)}.\frac{\left(x-3\right)^2}{x}-4=x\left(x-3\right)-4=x^2-3x-4=\left(x-\frac{3}{2}\right)^2-\frac{25}{4}\\ \)
a) \(A< -6\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{1}{4}< 0\) vô nghiệm
b) A>=-25/4 khi x=3/2
Có: \(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Có: \(x^4+y^4\ge2x^2y^2\)
\(\Leftrightarrow2\left(x^4+y^4\right)\ge\left(x^2+y^2\right)^2\ge\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
Suy ra: \(x^4+y^4\ge\frac{1}{8}\)
Vậy min M=1/8 khi \(x=y=\frac{1}{2}\)
\(\dfrac{x^2}{1+x^4}\ge\dfrac{0}{1+x^4}=0\)
GTNN là 0 khi x=0
\(\dfrac{x^2}{1+x^4}\le\dfrac{1}{2}\Leftrightarrow\left(x^2-1\right)^2\ge0\)
GTLN là \(\dfrac{1}{2}\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(x^2+3x+1\)
=\(\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{5}{4}\)
=\(\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\)
Ta có:\(\left(x+\dfrac{3}{2}\right)^2\ge0\) Với mọi x
=>\(\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\)
Dấu "=" xảy ra <=>\(\left(x+\dfrac{3}{2}\right)^2=0\)
<=>\(x+\dfrac{3}{2}=0\)
<=>\(x=\dfrac{-3}{2}\)
Lởi giải:
Áp dụng BĐT dạng \(|a|+|b|\ge |a+b|\) ta có:
\(|x+4|+|x+2018|=|x+4|+|-x-2018|\geq |x+4+(-x-2018)|=2014\)
Mà: \(|x+17|\geq 0\) (theo tính chất trị tuyệt đối)
\(\Rightarrow E=|x+17|+|x+4|+|x+2018|\geq 0+2014=2014\)
Vậy \(E_{\min}=2014\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x+4)(-x-2018)\geq 0\\ x+17=0\end{matrix}\right.\Leftrightarrow x=-17\)
\(A=\left(x-4\right)\left(x+3\right)\)
\(=x^2-x-12\)
\(=x^2-x+\dfrac{1}{4}-\dfrac{49}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{49}{4}\ge-\dfrac{49}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)