Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-\dfrac{1}{2}\right|\ge0\left(\forall x\right)\) dấu"=" xảy ra \(< =>x-\dfrac{1}{2}=0< =>x=\dfrac{1}{2}\)
\(B=\dfrac{3}{4}+|2-x|\ge\dfrac{3}{4}\left(\forall x\right)\) dấu"=" xảy ra \(< =>2-x=0< =>x=2\)
\(A=\dfrac{\left(x+1\right)^2+2+7}{\left(x+1\right)^2+2}=1+\dfrac{7}{\left(x+1\right)^2+2}< =1+\dfrac{7}{2}=\dfrac{9}{2}\)
Dấu = xảy ra khi x=-1
a) xx là x^2 hả ??? (tính sau nha)
b)Ta có \(\left|x-100\right|\ge0;\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow B\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-100=0\\y+200=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(B_{min}=-1\Leftrightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
c)pt o có GTLN
Tham khảo(nếu a ko có xx)
https://olm.vn/hoi-dap/detail/97637814260.html
A=x2-2x.1/2+1/4+3/4
=(x-1/2)2+3/4>=3/4
dau "=" xay ra khi va chi khi x-1/2=0=>x=1/2
vay GTNN cua A la 3/4 khi va chi khi x=1/2
Ta có: \(A=\left|x-1\right|+\left|x-2\right|+\left|x-6\right|=\left|x-1\right|+\left|x-6\right|+\left|x-2\right|\)
Xét \(\left|x-1\right|+\left|x-6\right|\)ta có:
\(\left|x-1\right|+\left|x-6\right|=\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\)(1)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(6-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x-1< 0\\6-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\6< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>6\end{cases}}\)( vô lý )
TH2: \(\hept{\begin{cases}x-1\ge0\\6-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\6\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le6\end{cases}}\Leftrightarrow1\le x\le6\)
Ta có: \(\left|x-2\right|\ge0\forall x\)(2)
Từ (1) và (2) \(\Rightarrow\left|x-1\right|+\left|x-6\right|+\left|x-2\right|\ge5\)
hay \(A\ge5\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}1\le x\le6\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le6\\x=2\end{cases}}\Leftrightarrow x=2\)
Vậy \(minA=5\)\(\Leftrightarrow x=2\)
Bỏ các dấu giá trị tuyệt đối , ta xét các trường hợp sau:
+) Nếu x < - 4 :
=> A = - (x - 5) - (x+4) - (x - 2) - (x - 1) = -x + 5 - x - 4 - x + 2 - x + 1 = -4x + 4
Vì x < - 4 => -4x > (-4).(-4) => -4x + 4 > 16 + 4 = 20 =>A > 20
+) Nếu -4 \(\le\) x < 1
=> A = - (x - 5) + x + 4 - (x - 2) - (x - 1) = -x + 5 +x + 4 - x + 2 -x + 1 = -2x + 12
x < 1 => -2x + 12 > (-2) .1 + 12 = 10 => A > 10
+) Nếu 1 \(\le\) x < 2 => A = -(x - 5) + x+ 4 - (x - 2) + (x - 1) = -x + 5 + x+ 4 -x + 2 + x - 1 = 12
+) Nếu 2 \(\le\) x < 5
=> A = -x + 5 + x+ 4 + x - 2 + x - 1 = 2x+ 6 \(\ge\) 2.2 + 6 = 10
+) Nếu x \(\ge\) 5
=> A = x - 5 + x+ 4 + x - 2 + x - 1 = 4x -4 \(\ge\) 4.5 - 4 = 16
Từ các trường hợp trên => A nhỏ nhất = 10 khi 2 \(\le\) x < 5
x thuộc gì ?
vì |x-2| luôn\(\ge\) 0 và |x+1/2| \(\ge\) 0
suy ra GTNN của A=|x-2|+|x+1/2| = 0