K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2019

+) Xét Ix-1I + Ix-5I

Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:

\(|x-1|+|x-5|\ge|x-1-x+5|=4\)

Dấu "=" xảy ra khi (x-1)(x-5) \(\le\)0

+) Xét Ix-2I + Ix-4I

Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:

\(|x-2|+|x-4|\ge|x-2-x+4|=2\)

Dấu "=" xảy ra khi (x-2)(x-4) \(\le\)0

+) Xét Ix-3I

Vì Ix-3I\(\ge\)

Dấu "=' xảy ra khi x-3=0 hay x=3

Suy ra: A = Ix-1I + Ix-2I + Ix-3I + Ix-4I + Ix-5I + 2019 \(\ge\)4+2+0+2019 = 2025

Dấu"=" xảy ra khi x=3

Vậy gtnn của A là 2025 tại x=3

16 tháng 3 2019

khi làm bài dạng này cần xét từng cặp có độ "chênh đơn vị" nhỏ dần,rồi đến cái cuối cùng xét riêng nó lấy x,đó là gt đúng của x

9 tháng 7 2019

(Không biết là dấu // của bạn là gì có phải | giá trị tuyệt đối?)

1, Không có giá trị lớn nhấn vì số mũ dương. Giá trị nhỏ nhất là 2019. x=1; y=2

2, Không có giá trị lớn nhất), Giá trị nhỏ nhất tại: (vì giá trị tuyệt đối luôn dương)

https://hotavn.ga/horobot/horobotmath.php?s=Tra+t%C6%B0%CC%80&val=min(%7Cx%2B3%7C%2B%7Cx-y%2B4%7C-10)

3, C <= 2000 vì (giá trị tuyệt đối luôn dương mà đằng trước dấu giá trị tuyệt đối là - nên luôn âm)
=> 

4, vì số mũ dương mà ta lại có 2 ẩn trong đó một ẩn luôn dương và một ẩn luôn âm nên không có giá trị lớn nhất và nhỏ nhất
 

9 tháng 7 2019

1, Ta có: (x - 1)2000 \(\ge\)\(\forall\)x

|y - 2|2000 \(\ge\)\(\forall\)y

=> (x - 1)2000 + |y - 2|2000 + 2019 \(\ge\)2019 \(\forall\)x, y

hay A \(\ge\)2019 \(\forall\)x,y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy Amin = 2019 tại  x = 1 và y = 2

2) Ta có: |x + 3| \(\ge\)\(\forall\)x

|x - y + 4| \(\ge\) 0 \(\forall\)x, y

=> |x + 3| + |x - y + 4| - 10 \(\ge\)-10  \(\forall\)x,y

hay B \(\ge\)-10 \(\forall\)x,y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+3=0\\x-y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\x-y=-4\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

vậy Bmin = -10 tại x = -3  và y = 1

28 tháng 10 2019

a,  1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020​ + (-2) ≥ (-2) => A ≥ -2

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)

Vậy GTNN A = -2 khi x = 2019 và y = 1

2, Ta có: |x - 3| = |3 - x|

Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1

=> C ≥ 1 - 5 => C ≥ -4

Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0

+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)

+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)

Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3

b,

1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9

Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5

Vậy GTLN B = 9 khi x = 5 hoặc x = -5

2, Đk: x ≠ 5

 \(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)

Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6

=> \(D=1+1=2\)

Vậy GTLN của D = 2 khi x = 6

17 tháng 9 2019

Bài 1:

a) \(\left|x-2\right|=5\)

\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\left[{}\begin{matrix}x=5+2\\x=\left(-5\right)+2\end{matrix}\right.\)\(\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

Vậy \(x\in\left\{7;-3\right\}.\)

b) \(\left|x-1\right|>4\)

\(\left[{}\begin{matrix}x-1>4\\x-1< -4\end{matrix}\right.\)\(\left[{}\begin{matrix}x>5\left(TM\right)\\x< -3\left(TM\right)\end{matrix}\right.\)

Vậy \(x>5\) hoặc \(x< -3\) thì \(\left|x-1\right|>4.\)

Mình chỉ làm bài 1 thôi nhé.

Chúc bạn học tốt!

17 tháng 9 2019

bài 2

\(A=\left|x-\frac{1}{3}\right|+2019\)

Có: \(\left|x-\frac{1}{3}\right|\ge0với\forall x\)

\(\Rightarrow\left|x-\frac{1}{3}\right|+2019\ge2019\\ \Leftrightarrow A\ge2019\)

Dấu "=" xảy ra khi: \(\left|x-\frac{1}{3}\right|=0\Leftrightarrow x=\frac{1}{3} \)

Vậy \(A_{min}=2019\) khi \(x=\frac{1}{3}\)

\(B=2020.\left|3x-1\right|\)

Có: \(\left|3x-1\right|\ge0với\forall x\)

\(\Rightarrow2020.\left|3x-1\right|\ge0\)

\(\Leftrightarrow B\ge0\)

Dấu "=" xảy ra khi \(\left|3x-1\right|=0\Leftrightarrow x=\frac{1}{3}\)

Vậy \(B_{min}=0\) khi \(x=\frac{1}{3}\)

25 tháng 9 2019

Ta có:

a) A = |x - 2| + |x - 4| + 2017|

=> A = |x - 2| + |4 - x| + 2017 \(\ge\)|x - 2 + 4 - x| + 2017 = |2| + 2017=2019

Dấu "=" xảy ra <=> (x - 2)(4 - x) \(\ge\)0

<=> 2 \(\le\)\(\le\)4

Vậy MinA = 2019 <=> 2 \(\le\)\(\)4

b) Ta có: B = |2019 - x| + |2020 - x|

=> B = |x - 2019| + |2020 - x| \(\ge\)|x - 2019 + 2020 - x| = |1| =  1

Dấu "=" xảy ra <=> (x - 2019)(2020 - x) \(\ge\)0

<=> 2019 \(\le\)\(\le\)2020

Vậy MinB = 1 <=> 2019 \(\le\)\(\le\)2020

25 tháng 9 2019

ta có 

        /x-2/> hoặc= x-2

       /x-4/= /4-x/> hoặc=4-x      

=> /x-2/+/x-4/+2017> hoặc= (x-2)+(4-x)+2017=2019

           hay A> hoặc= 2019

           => GTNN của A là 2019

b,

       Vì /2019-x/ > hoặc= 2019-x

            /2020-x/=/x-2020/> hoặc=x-2020

      =>/2019-x/+/2020-x/>hoặc=(2019-x)+(x-2020)=-1

         Hay B> hoặc=-1

               =>B=1

21 tháng 4 2021

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

21 tháng 4 2021

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

8 tháng 5 2019

1. A=\(\frac{x^2-1}{x^2+1}\)

=> A=\(\frac{x^2+1-2}{x^2+1}\)=1-\(\frac{2}{x^2+1}\)

để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi đó (x2+1) đạt GTNN 

mà x2+1>=1 suy ra x2+1 đạt GTNN là 1 khĩ=0. 

khi đó A đạt GTLN là A=1-\(\frac{2}{0^2+1}\)=1-2=-1 . khi x=0

8 tháng 5 2019

Đặt \(A=\left|x+2017\right|+\left|x-2\right|\)

\(=\left|x+2017\right|+\left|2-x\right|\)

\(\ge\left|x+2017+2-x\right|\)

\(=2019\)

Dấu bằng xảy ra khi và chỉ khi:\(-2017\le x\le2\)

\(\Rightarrow B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\le\frac{1}{2019}\)

Vậy \(B_{max}=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)

5 tháng 10 2018