Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
Lời giải :
\(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)
\(=\left|x+1\right|+\left|x-1\right|\)
\(=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)\left(1-x\right)\ge0\Leftrightarrow-1\le x\le1\)
a) đk: \(x\ge0;x\ne\left\{\frac{1}{4};1\right\}\)
\(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(P=\left[\frac{\left(2x+\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{x-1}\right]\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(P=\frac{\left(x-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}}{2\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}\)
b) Ta có:
\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}=\frac{\left(x+\sqrt{x}+1\right)-1}{x+\sqrt{x}+1}=1-\frac{1}{x+\sqrt{x}+1}\)
Mà \(x+\sqrt{x}\ge0\left(\forall x\right)\)
\(\Leftrightarrow x+\sqrt{x}+1\ge1\left(\forall x\right)\)
\(\Leftrightarrow\frac{1}{x+\sqrt{x}+1}\le1\left(\forall x\right)\)
\(\Leftrightarrow P=1-\frac{1}{x+\sqrt{x}+1}\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x+\sqrt{x}=0\Leftrightarrow x=0\)
Vậy Min(P) = 0 khi x = 0
a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)
Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)
\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)
Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)
\(y=\sqrt{x^2-2x+1}-\sqrt{x^2+2x+1}\)
\(=\sqrt{\left(x-1\right)^2}-\sqrt{\left(x+1\right)^2}\)
\(=\left|x-1\right|-\left|x+1\right|\)
+)Xét \(x< -1\)\(\Rightarrow\begin{cases}x+1< 0\Rightarrow\left|x+1\right|=-\left(x+1\right)=-x-1\\x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)
\(\Rightarrow y=\left(-x-1\right)-\left(-x+1\right)=2\)
+)Xét \(-1\le x< 1\)\(\Rightarrow\begin{cases}x\ge-1\Rightarrow x+1\ge0\Rightarrow\left|x+1\right|=x+1\\x< 1\Rightarrow x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)
\(\Rightarrow y=\left(-x+1\right)-\left(x+1\right)=-2x\)
+)Xét \(x\ge1\)\(\Rightarrow\begin{cases}x-1\ge0\Rightarrow\left|x-1\right|=x-1\\x+1\ge0\Rightarrow\left|x+1\right|=x+1\end{cases}\)
\(\Rightarrow y=\left(x-1\right)-\left(x+1\right)=-2\)
Ta thấy:
- Với \(x\ge1\) ta tìm được \(Min_y=-2\)
- Với \(x< -1\) ta tìm được \(Max_y=2\)
1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ : \(2\le x\le4\)
\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
Áp dụng bđt AM - GM ta có :
\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)
\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)
Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2
=> A = \(\sqrt{2}\)
Vậy \(\sqrt{2}\le A\le2\)
\(A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}=\left|x+1\right|+\left|1-x\right|\ge2\left|x+1+1-x\right|=4\)
Dấu "=" xảy ra khi \(\left(x+1\right)\left(1-x\right)\ge0\Leftrightarrow-1\le x\le1\)
Vậy GTNN của A là 4.