Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
\(P\le\sqrt{\left(1+1\right)\left(x-1+9-x\right)}=\sqrt{16}=4\) (Bunhiacopxki)
\(\Rightarrow P_{max}=4\) khi \(x-1=9-x\Rightarrow x=5\)
\(P=\sqrt{x-1}+\sqrt{9-x}\ge\sqrt{x-1+9-x}=2\sqrt{2}\)
\(\Rightarrow P_{min}=2\sqrt{2}\) khi \(\left[{}\begin{matrix}x-1=0\\9-x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)
\(A^2=\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20..\)
\(A\le2\sqrt{5}..\)
\(y^2=-7x+71+24\sqrt{\left(x-1\right)\left(5-x\right)}\\ \)
Mà \(24\sqrt{\left(x-1\right)\left(5-x\right)}\ge0\\ \)
\(y^2\ge-7x+71\ge-35+71=36\\ \)=> \(y\ge6\)
Dấu= xảy ra khi và chỉ khi x=5
\(x^2+3-x^2\ge2\sqrt{x^2\left(3-x^2\right)}\)
\(3\ge2x\sqrt{3-x^2}\)
\(min\)\(p=3\)
XAY RA KHI \(x^2=3-x^2\)
HAY \(x=\sqrt{\frac{3}{2}}\)
Điều kiện xác định: \(3-x^2\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)
Ta có
\(P^2=4x^2.\left(3-x^2\right)=-4x^4+12x^2\)
\(=\left(-4x^4+12x^2-9\right)+9=9-\left(2x^2-3\right)^2\le9\)
\(\Rightarrow-3\le P\le3\)
Vậy GTNN là - 3 đạt được khi \(x=-\sqrt{\frac{3}{2}}\)
GTLN là 3 đạt được khi \(x=\sqrt{\frac{3}{2}}\)
PS: Khuyến mãi luôn GTLN cho bạn đó
\(\sqrt{3}\)