\(A=\sqrt{6-x}+\sqrt{x-3}\) với \(3\le x\le6\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

NV
11 tháng 10 2019

\(P\le\sqrt{\left(1+1\right)\left(x-1+9-x\right)}=\sqrt{16}=4\) (Bunhiacopxki)

\(\Rightarrow P_{max}=4\) khi \(x-1=9-x\Rightarrow x=5\)

\(P=\sqrt{x-1}+\sqrt{9-x}\ge\sqrt{x-1+9-x}=2\sqrt{2}\)

\(\Rightarrow P_{min}=2\sqrt{2}\) khi \(\left[{}\begin{matrix}x-1=0\\9-x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

22 tháng 2 2017

\(A^2=\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20..\)

\(A\le2\sqrt{5}..\)

22 tháng 2 2017

Bài a, c tìm GTLN thì làm được rồi, chỉ không biết tìm GTNN bằng BĐT như thế nào?
 

12 tháng 8 2017

\(y^2=-7x+71+24\sqrt{\left(x-1\right)\left(5-x\right)}\\ \)

Mà \(24\sqrt{\left(x-1\right)\left(5-x\right)}\ge0\\ \)

\(y^2\ge-7x+71\ge-35+71=36\\ \)=> \(y\ge6\)

Dấu= xảy ra khi và chỉ khi x=5

13 tháng 8 2018

Bạn làm vi diệu vậy

11 tháng 12 2016

\(x^2+3-x^2\ge2\sqrt{x^2\left(3-x^2\right)}\)

\(3\ge2x\sqrt{3-x^2}\)

\(min\)\(p=3\)

XAY RA KHI \(x^2=3-x^2\)

HAY \(x=\sqrt{\frac{3}{2}}\)

12 tháng 12 2016

Điều kiện xác định: \(3-x^2\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)

Ta có

\(P^2=4x^2.\left(3-x^2\right)=-4x^4+12x^2\)

\(=\left(-4x^4+12x^2-9\right)+9=9-\left(2x^2-3\right)^2\le9\)

\(\Rightarrow-3\le P\le3\)

Vậy GTNN là - 3 đạt được khi \(x=-\sqrt{\frac{3}{2}}\)

GTLN là 3 đạt được khi \(x=\sqrt{\frac{3}{2}}\)

PS: Khuyến mãi luôn GTLN cho bạn đó