K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

nguồn ở đâu vậy

4 tháng 8 2017

Đặt \(\left|3x-1\right|=a\)nên \(A=a^2-4a+5\)

Biến đổi A ta được \(A=a^2-4a+4+1=\left(a-2\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow a-2=0\Leftrightarrow\left|3x-1\right|=2\Leftrightarrow\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)

Vậy \(A_{min}=1\) tại \(\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)

4 tháng 8 2017

Đặt \(\left|3x-1\right|=a\) nên \(A=a^2-4a+5\)

\(\Rightarrow A=\left(a^2-4a+4\right)+1=\left(a-2\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow a=2\Leftrightarrow\left|3x-1\right|=2\Leftrightarrow\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)

Vậy \(A_{min}=1\) tại \(\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)

6 tháng 1 2021

B=\(4x^2-4x+1+x^2+4x+4=5x^2+5\)

                                                  \(=5\left(x^2+1\right)\)

\(x^2+1\ge1\forall x\)

\(\Leftrightarrow B\ge5\forall x\)

dấu'=' xảy ra \(\Leftrightarrow x^2+1=0\Leftrightarrow x=0\)

vậy B đạt GTNN =5 khi x=0

Bài 2: 

a) Ta có: \(A=x^2-3x+5\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

Ta có: \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)

hay \(x=\dfrac{3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-3x+5\) là \(\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)

10 tháng 10 2019

câu a là hằng đẳng thức luôn

A=(2x+4)^2

B khai triển tung tóe ra thì phần sau triệt tiêu hết còn 4(a^2+b^2+c^2)

câu c cảm giác sai đề vì mấy câu này phải là (3x)^ ms ra hdt chứ nhỉ

12 tháng 9 2017

Đăng ít thôi.

12 tháng 9 2017

Liên quan à!!!

2 tháng 9 2016

Bài 1:

a)(4x-3)(3x+2)-(6x+1)(2x-5)+1

=12x2-x-6-12x2+28x+5+1

=27x

b)(3x+4)2+(4x-1)2+(2+5x)(2-5x)

=9x2+24x+16+16x2-8x+1+4-25x2

=16x+21

c)(2x+1)(4x2-2x+1)+(2-3x)(4+6x+9x2)-9

=8x3+1+8-27x3-9

=-19x3

 

2 tháng 9 2016

Bài 2:

a)3x(x-4)-x(5+3x)=-34

=>3x2-12x-3x2-5x=-34

=>-17x=-34

=>x=2

Vậy x=2

b)(3x+1)2+(5x-2)2=34(x+2)(x-2)

=>9x2+6x+1+25x2-20x+4=34(x2-4)

=>34x2-14x+5-34x2+136=0

=>-14x+141=0

=>-14x=-141

=>x=\(\frac{141}{14}\)

Vậy x=\(\frac{141}{14}\)

c)x3+3x2+3x+28=0

=>x3-x2+7x+4x2-4x+28=0

=>x(x2-x+7)+4(x2-x+7)=0

=>(x+4)(x2-x+7)=0

\(\Rightarrow\left[\begin{array}{nghiempt}x+4=0\\x^2-x+7=0\left(2\right)\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=-4\\\left(2\right)\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}>0\end{array}\right.\)

=>(2) vô nghiệm

Vậy x=-4

20 tháng 8 2016

Đặt \(y=\left|3x-1\right|,y\ge0\) thì 

\(A=y^2-4y+5=\left(y^2-4y+4\right)+1=\left(y-2\right)^2+1\ge1\)

Min A = 1 <=> y = 2 <=> |3x-1| = 2 \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-\frac{1}{3}\end{array}\right.\)

 

3 tháng 3 2017

\(F\)=5 ; \(I\)=91

7 tháng 3 2017

đặt |3x-5|= y ,ĐK : y >/ 0 

F=y2-6y+10 đến đây đơn giản

ý sau khai triển tử của I rồi rút gọn được I=10x+40/x+41 >/ 2.20+41=81 (áp dụng bđt AM-GM)

12 tháng 12 2018

\(A=\frac{8x^2-24x+32}{8\left(x-1\right)^2}=\frac{x^2-10x+25+7\left(x-1\right)^2}{8\left(x-1\right)^2}=\frac{\left(x-5\right)^2}{8\left(x-1\right)^2}+\frac{7}{8}\ge\frac{7}{8}\forall x\)

Dấu "=" xảy ra khi \(x-5=0\Rightarrow x=5\)

Vậy GTNN của A là \(\frac{7}{8}\) khi x = 5

12 tháng 12 2018

la 4 nha ban