\(\frac{x}{x+3}\)

Với x thuộc Z

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

Ta có: Với x là số cố định => để A có GTNN thì x+3 có giá trị lớn nhất

=> x+3 là số nguyên âm lớn nhất

=>x+3=-1

=>x=-1-3

=>x=-4

Vậy x=-4 thì A có GTNN

4 tháng 6 2016

\(A=\frac{x+3-3}{x+3}=1-\frac{3}{x+3}.\)( x thuộc Z và x # -3 )

A đạt giá trị nhỏ nhất khi \(\frac{3}{x+3}\)đạt giá trị lớn nhất 

Với x thuộc Z và x # -3 ta có : \(\frac{3}{x+3}\le\frac{3}{-2+3}=3\)=> giá trị lớn nhất của \(\frac{3}{x+3}\)= 3 khi x = -2 

Vậy GTNN A = 1 - 3 = - 2 Khi x = -2 

4 tháng 6 2016

\(A=\frac{x}{x+3}=1-\frac{3}{x+3}\)

Để A đật GTNN <=> \(\frac{3}{x+3}\)đạt GTLN <=> \(x+3\)đạt GTNN <=> \(x=0\)

Với x=0 thì Giá trị Của A là 0

4 tháng 6 2016

Ta có : \(A=\frac{x}{x+3}=\frac{x+3-3}{x+3}=\frac{x+3}{x+3}-\frac{3}{x+3}\)\(=1-\frac{3}{x+3}\)

=> Để A có GTNN thì \(\frac{3}{x+3}\) có GTLN

Ta có: 3>0 và  \(\frac{3}{x+3}\) có GTLN => x+3 nhỏ nhất

=> x+3 là số nguyên dương nhỏ nhất

=> x+3=1 => x=1-3=-2

Vậy x=-2 hì A có GTNN.

2 tháng 3 2020

\(A=\left(x+y+z+\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge2\sqrt{x.\frac{1}{4x}}+2\sqrt{y.\frac{1}{4y}}+2\sqrt{z.\frac{1}{4z}}+\frac{3}{4}\left(\frac{9}{x+y+z}\right)\)

\(\ge1+1+1+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)

Dấu "=" xảy ra <=> x = y = z = 1/2

Vậy min A = 15/2 tại x = y = z = 1/2

22 tháng 6 2020

Lời giải của em ạ :D

\(A=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\ge x+y+z+\frac{9}{x+y+z}\)

Đặt \(t=x+y+z\le\frac{3}{2}\)

Khi đó \(A=t+\frac{9}{t}=\left(t+\frac{9}{4t}\right)+\frac{27}{4t}\ge3+\frac{27}{4\cdot\frac{3}{2}}=\frac{15}{2}\)

Đẳng thức xảy ra tại x=y=z=1/2

12 tháng 12 2017

ta có \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}=6\)

Mà \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}\ge\frac{36}{x+2y+3z}\Rightarrow6\ge\frac{36}{x+2y+3z}\Rightarrow x+2y+3z\ge6\)

MÀ \(y^2+1\ge2y;z^3+1+1\ge3z\)

=> A+3\(\ge\left(x+2y+3z\right)=6\) => A>=3

dấu = xảy ra <=> x=y=z

30 tháng 5 2017

ta có

x luôn lớn hơn x-1 một đơn vị

mà x khác 1 => x=2;3;4;........

x=2 thì A=2/1=2

x=3 thì A=3/2<2

tương tự với các số khác=> x=2

30 tháng 5 2017

\(A=\frac{x}{x-1}=\frac{x-1+1}{x-1}=\frac{x-1}{x-1}+\frac{1}{x-1}=1+\frac{1}{x-1}\)

=> để A nhỏ nhất thì 1+ 1/x-1 đạt giá trị nhỏ nhất.

=>1/x-1 nhỏ nhất nên x-1 nhỏ nhất

=>x-1=-1

=>x=0

4 tháng 6 2016

Ta có 1> 0 => để C có GTNN thì 3-2x lớn nhất => 3-2x là số nguyên âm lớn nhất

=> 3-2x=-1 => 2x=4 => x=2. Vậy x=2 thuộc Z khi đó C=-1

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:Bài 1,cho a,b,c là các số dương . Tìm GTNN của :a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:                            \(A=\frac{x+y}{xyz}\)         b, cho các số dương x,y,z,t có...
Đọc tiếp

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:

Bài 1,cho a,b,c là các số dương . Tìm GTNN của :

a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)

b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)

Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:

                            \(A=\frac{x+y}{xyz}\)

         b, cho các số dương x,y,z,t có tổng bằng 2. Tìm GTNN của 

                           \(B=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

Bài 3 : Tìm GTNN của \(A=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)biết rằng \(x,y,z\) là các số dương và \(x^2+y^2+z^2\le3\)

Bài 4:  a, Tìm GTLN của tích xy với x,y là các số dương, \(y\ge6\)và \(x+y=100\)

          b, Tìm GTLN của tích xyz với x,y,z là các số dương,\(z\ge6\)và \(x+y+z=100\)

2
18 tháng 7 2016

Bài 1:a,

A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc 

Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2 

b,làm tt câu a 

18 tháng 7 2016

câu 1 của bạn chính sác đấy