Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}\) . Đặt \(y=x+2\Rightarrow x=y-2\)
\(\Rightarrow x^2+2x+3=\left(y-2\right)^2+2\left(y-2\right)+3=y^2-2y+3\)
\(\Rightarrow A=\frac{y^2-2y+3}{y^2}=1-\frac{2}{y}+\frac{3}{y^2}\)
Đặt \(\frac{1}{y}=z\Rightarrow A=3z^2-2z+1=3\left(z-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow z=\frac{1}{3}\Leftrightarrow y=3\Leftrightarrow x=1\)
Vậy Min A = \(\frac{2}{3}\Leftrightarrow x=1\)
Cách 2 : Ta có : \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{x^2+2x+3}{x^2+4x+4}=\frac{3\left(x^2+2x+3\right)}{3\left(x^2+4x+4\right)}=\frac{2\left(x^2+4x+4\right)+\left(x^2-2x+1\right)}{3\left(x^2+4x+4\right)}\)
\(=\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}+\frac{2}{3}\ge\frac{2}{3}\). Dấu đẳng thức xảy ra khi x = 1.
Vậy Min A = 2/3 <=> x = 1
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Đặt \(y=x+2\Rightarrow x=y-2\)
Ta có : \(\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{\left(y-2\right)^2+2\left(y-2\right)+3}{y^2}=\frac{y^2-2y+3}{y^2}=\frac{3}{y^2}-\frac{2}{y}+1\)
Lại đặt \(t=\frac{1}{y}\), \(\Rightarrow\frac{3}{y^2}-\frac{2}{y}+1=3t^2-2t+1=3\left(t-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow t=\frac{1}{3}\Leftrightarrow y=3\Leftrightarrow x=1\)
Vậy biểu thức đạt giá trị nhỏ nhất bằng \(\frac{2}{3}\) tại x = 1
\(A=\frac{x^2+2x+3}{x^2+4x+4}-\frac{2}{3}+\frac{2}{3}\)
\(=\frac{x^2-2x+1}{\left(x+2\right)^2}+\frac{2}{3}\)
\(=\frac{\left(x-1\right)^2}{\left(x+2\right)^2}+\frac{2}{3}\)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow\frac{\left(x-1\right)^2}{\left(x+2\right)^2}\ge0}\)
Dấu '' ='' xảy ra khi và chỉ khi x=1
=> Min A =2/3 khi x=1
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
\(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{\left(x^2-2x+1\right)+\left(2x^2+8x+8\right)}{3\left(x+2\right)^2}\)
\(=\frac{\left(x-1\right)^2+2\left(x+2\right)^2}{3\left(x+2\right)^2}=\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}+\frac{2}{3}\ge\frac{2}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy GTNN của A là \(\frac{2}{3}\Leftrightarrow x=1\)
Thiếu ĐKXĐ \(x\ne-2\)