Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
ĐKXĐ x thuộc R
ta thấy x^2 +1 >=0
=> \(\frac{3-4x}{x^2+1}\)>=0
dấu bằng xảy ra khi và chỉa khi
3 -4x =0
=> 4x = 3
=> x = \(\frac{3}{4}\)
vậy MINA = 0 tại x = \(\frac{3}{4}\)
\(A=\frac{x^2}{2}-\frac{x}{6}+3\)
\(2A=x^2-\frac{x}{3}+6=x^2-2.x\frac{1}{6}+\frac{1}{36}+\frac{35}{36}\)
\(2A=\left(x+\frac{1}{6}\right)^2+\frac{35}{36}\ge\frac{35}{36}\)
\(\Rightarrow A\ge\frac{35}{72}\)Dấu "=" xảy ra khi \(x=\frac{-1}{6}\)
b)\(B=x^4-4x^3+6x^2-4x+5\)
\(B=\left(x^4-4x^3+4x^2\right)+\left(2x^2-4x+2\right)+3\)
\(B=\left(x^2-2x\right)^2+2\left(x+1\right)^2+3\ge3\)
Dấu "=" xảy ra khi:\(x=0;-1;2\)
*GTNN:
A=\(\frac{x^2-4x+4-x^2-1}{x^2+1}\) =\(\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\)
GTNN của A=-1 khi và chỉ khi x=2
*GTLN:
A=\(\frac{4x^2+4-4x^2-4x-1}{x^2+1}\) =4-\(\frac{\left(2x+1\right)}{x^2+1}\le4\)
GTLN của A=4 khi và chỉ khi x=\(\frac{-1}{2}\)
A = \(\frac{3-4x}{x^2+1}\) <=> A.(x2 + 1) = 3 - 4x <=> Ax2 + 4x + A - 3 = 0
Để phương thức trên tồn tại x thì 4 - A.(A-3) = -A2 + 3A +4 > 0
<=> A2 - 3A - 4 < 0
<=> (A+1). (A - 4) < 0
<=> -1 < A < 4
Vậy GTNN của A là -1 và GTLN của A là 4