\(\frac{1}{x^2+y^2}+\frac{1}{xy}\) biết x,y>0; x+y=1

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2017

Câu hỏi của thanh tam tran - Toán lớp 7 - Học toán với OnlineMath

28 tháng 5 2017

\(x+y=1\Leftrightarrow x^2+2xy+y^2=1\)

mà \(x^2+y^2\ge2xy\Rightarrow x^2-2xy+y^2\ge0\)cộng vế với vế ta được

\(x^2+y^2\ge\frac{1}{2}\)

\(A=\frac{1}{X^2+y^2}+\frac{1}{xy}\ge\frac{1}{x^2+y^2}+\frac{2}{x^2+y^2}=\frac{3}{x^2+y^2}\ge\frac{3}{0,5}=6\)

\(A_{min}=6\)dấu = khi x=y= 1/2

15 tháng 1 2017

Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\x+y=1\end{cases}}\Rightarrow x=y=\frac{1}{2}\)

28 tháng 4 2017

Ta có:

\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\frac{\left(a+b\right)^2}{1}=\left(a+b\right)^2\)

Dấu "=" xảy ra khi \(\Leftrightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\x+y=1\end{cases}}\Leftrightarrow...\) (tự tìm nha! Mình đang bận)

Vậy...

7 tháng 4 2018

tại sao 

\(\frac{a^2}{x^2}\)+\(\frac{b^2}{y^2}\)\(\ge\)\(\frac{\left(a+b\right)^2}{x+y}\)

7 tháng 8 2019

cj MAi

7 tháng 8 2019

                                                               Bài giải

                        Ta có : \(P=\frac{a^2}{x}+\frac{b^2}{y}\) đạt GTNN khi \(\frac{a^2}{x}\) và \(\frac{b^2}{y}\) cùng đạt GTNN

             Mà \(\frac{a^2}{x}\) và \(\frac{b^2}{y}\) cùng đạt GTNN khi \(a^2\) và \(b^2\) cùng đạt giá trị nhỏ nhất 

                     \(\Rightarrow\text{ }a^2\text{ và }b^2=0\)

\(\Rightarrow\text{ }a,b=0\)

\(\text{Vì }0\) chia số nào cũng bằng 0 

\(\Rightarrow\text{ }GTNN\text{ của }P=0\)

8 tháng 2 2017

A=\(\left[\frac{x\left(x-y\right)}{y\left(x+y\right)}+\frac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\right]:\left[\frac{y^2}{x\left(x-y\right)\left(x+y\right)}+\frac{1}{x+y}\right]\frac{ }{ }\)

=\(\left[\frac{x^2\left(x-y\right)+y\left(x-y\right)\left(x+y\right)}{xy\left(x+y\right)}\right]:\left[\frac{y^2+x\left(x-y\right)}{x\left(x-y\right)\left(x+y\right)}\right]\)=\(\frac{\left(x-y\right)\left(x^2+y^2+xy\right)}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{y^2+x\left(x-y\right)}\)

=\(\frac{\left(x-y\right)^2\left(x^2+y^2+xy\right)}{y\left(x^2+y^2-xy\right)}\)=\(\frac{\left(x-y\right)^2\left(x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}{y\left(x^2-xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}\)=\(\frac{\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}{y.\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}\)

Ta nhận thấy các số trong ngoặc đều dương.

=> Để A>0 thì y>0

Vậy để A>0 thì y>0 và với mọi x

11 tháng 10 2018

a) Ta có: \(\hept{\begin{cases}\left|y-1\right|\ge0\forall y\\\left|5-x\right|\ge0\forall x\end{cases}\Rightarrow\left|y-1\right|+\left|5-x\right|\ge0\forall}x;y\)

Mà \(\left|y-1\right|+\left|5-x\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|y-1\right|=0\\\left|5-x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}y-1=0\\5-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=5\end{cases}}}\)

Vậy \(\hept{\begin{cases}y=1\\x=5\end{cases}}\)

b)  Ta có: \(\left|y-6\right|\ge0\forall y\)

\(\Rightarrow\left|y-6\right|>0\Leftrightarrow y\ne6\)

\(\Rightarrow\)Để \(\frac{\left|y-6\right|}{x+2}>0\)thì \(\hept{\begin{cases}y\ne6\\x+2>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)

Vậy \(\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)

c) Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2>0\Leftrightarrow x\ne0\)

Để \(\frac{x^2-1}{x^2}>0\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x\ne0\end{cases}\Leftrightarrow}x>1}\)

Vậy \(x>1\)

Tham khảo nhé~

24 tháng 7 2016

xy+2x+y+11=0

=> x.(y+2)+y=-11

=> x.(y+2)+(y+2)= -11+2=-9

=> (x+1).(y+2)=-9

=> x+1 và y+2 thuộc Ư(-9)={1;-1;3;-3;9;-9}

x+1 y+2 x y 1 -9 0 -11 -1 9 -2 7 3 -3 2 -5 -3 3 -4 1 9 -1 8 -3 -9 1 -10 -1

Vậy....

\(xy+2x+y+11=0\)

\(\Rightarrow y\left(x+y\right)+2\left(x+5,5\right)=0\)

\(\Rightarrow\hept{\begin{cases}y\left(x+y\right)=0\\x+5,5=0\end{cases}\Rightarrow\hept{\begin{cases}y=0\\x=-5,5\end{cases}}}\)

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

27 tháng 6 2018

1)  1/x-1/y

=y/xy-x/xy

=y-x/xy

= - (x-y)/xy

= -1 (vì x-y=xy)

2)

(x- 1/2)*(y+1/3)*(z-2)=0

=> x-1/2 = 0 hoac y+1/3=0 hoac z-2=0

th1 :x-1/2=0 => x=1/2

x+2=y+3=z+4

mà x=1/2 => y= -1/2 ; z=-3/2

th2: y+1/3=0

th3 : z-2=0

(tự làm nha)

27 tháng 6 2018

1)  Với x,y khác 0, Ta có

\(\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=-\left(\frac{x-y}{xy}\right)=-\left(\frac{xy}{xy}\right)=-1\)

Vậy \(\frac{1}{x}-\frac{1}{y}=-1\)

2) Ta có:

\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)

Trường hợp 1: x - 1/2 = 0 => x = 1/2 \(\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)

Trường hợp 2: y + 1/3 = 0 => y = -1/3 \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)

Trường hợp 3: z - 2 = 0 => z = 2 \(\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)

Vậy......

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)