Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(1+\dfrac{1}{y}+x+\dfrac{x}{y}+1+\dfrac{1}{x}+y+\dfrac{y}{x}\)
A= \(\left(x+\dfrac{1}{2x}\right)+\left(y+\dfrac{1}{2y}\right)+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+2\)
Áp Dụng BĐT Cô si ta có:
\(\left(x+\dfrac{1}{2x}\right)\ge\sqrt{2}\); \(\left(y+\dfrac{1}{2y}\right)\ge\sqrt{2}\); \(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge2\)
\(\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge2\sqrt{\dfrac{1}{2x.2y}}=\dfrac{1}{\sqrt{xy}}\ge\dfrac{\sqrt{2}}{\sqrt{x^2+y^2}}=\sqrt{2}\)
suy ra A\(\ge4+3\sqrt{2}\)
Dấu = xảy ra
\(\left\{{}\begin{matrix}x=y\\x=\dfrac{1}{2x}\\y=\dfrac{1}{2y}\end{matrix}\right.\)
\(\Leftrightarrow\)x=y=\(\dfrac{\sqrt{2}}{2}\)
Vậy Min A=4+3\(\sqrt{2}\) khi x=y=\(\dfrac{\sqrt{2}}{2}\)
Trước hết ta có \(\dfrac{\left(x+y\right)^2}{2}\le x^2+y^2\Rightarrow x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\)
\(A=1+\dfrac{1}{y}+x+\dfrac{x}{y}+1+\dfrac{1}{x}+y+\dfrac{y}{x}\)
\(A=2+x+y+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{x}{y}+\dfrac{y}{x}\ge2+x+y+\dfrac{4}{x+y}+2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)
\(\Rightarrow A\ge4+x+y+\dfrac{4}{x+y}=4+x+y+\dfrac{2}{x+y}+\dfrac{2}{x+y}\)
\(\Rightarrow A\ge4+2\sqrt{\left(x+y\right).\dfrac{2}{\left(x+y\right)}}+\dfrac{2}{\sqrt{2}}=4+3\sqrt{2}\)
\(\Rightarrow A_{min}=4+3\sqrt{2}\) khi \(x=y=\dfrac{1}{\sqrt{2}}\)
a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)
b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)
c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)
d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)
e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)
Lời giải:
Xét biểu thức C
Ta có: \(C=x+\frac{4}{(x-y)(y+1)^2}=x-y+y+\frac{4}{(x-y)(y+1)^2}\)
\(C=(x-y)+\frac{y+1}{2}+\frac{y+1}{2}+\frac{4}{(x-y)(y+1)^2}-1\)
Áp dụng BĐT AM-GM ta có:
\((x-y)+\frac{y+1}{2}+\frac{y+1}{2}+\frac{4}{(x-y)(y+1)^2}\geq 4\sqrt[4]{(x-y).\frac{(y+1)^2}{4}.\frac{4}{(x-y)(y+1)^2}}=4\)
\(\Rightarrow C\geq 4-1=3\Leftrightarrow C_{\min}=3\)
Dấu bằng xảy ra khi \(x=2; y=1\)
Biểu thức D không có điều kiện gì thì không có min em nhé. Trừ khi \(D=x+\frac{1}{xy(x-y)}\)
\(Q=\dfrac{xyz}{z^3\left(x+y\right)}+\dfrac{xyz}{x^3\left(y+z\right)}+\dfrac{xyz}{y^3\left(x+z\right)}\)
\(=\dfrac{1}{z^3\left(x+y\right)}+\dfrac{1}{y^3\left(x+z\right)}+\dfrac{1}{x^3\left(y+z\right)}\) (vì xyz = 1)
\(=\dfrac{\left(\dfrac{1}{z}\right)^2}{z\left(x+y\right)}+\dfrac{\left(\dfrac{1}{y}\right)^2}{y\left(x+z\right)}+\dfrac{\left(\dfrac{1}{x}\right)^2}{x\left(y+z\right)}\)
Áp dụng BĐT cauchy schwarz với x,y,z > 0 ta có:
\(Q\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(xy+yz+xz\right)}=\dfrac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\dfrac{xy+yz+xz}{2}\)Mặt khác theo BĐT cauchy với x;y;z>0 thì
\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}=3\)
Vậy MinQ = \(\dfrac{3}{2}\Leftrightarrow x=y=z=1\)
Ta có : \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x+1\right)^2\ge4x\)
và \(\left(y+1\right)^2\ge4y\)
Do đó : A \(\ge\dfrac{4x}{x}+\dfrac{4y}{y}=8\)
Dấu '' = '' xảy ra khi x = y = 1
Vậy min A là 8 khi x = y = 1