Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(x^2+4x+7=x^2+4x+4+3=\left(x+2\right)^2+3\ge3\)
Dấu = xảy ra \(< =>x+2=0< =>x=-2\)
Vậy \(A_{min}=3\)khi \(x=-2\)
b,\(4x^2+4x+6=\left(2x\right)^2+4x+1+5=\left(2x+1\right)^2+5\ge5\)
Dấu = xảy ra \(< =>2x+1=0< =>x=-\frac{1}{2}\)
Vậy \(B_{min}=5\)khi \(x=-\frac{1}{2}\)
c,\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu = xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)
Vậy \(C_{min}=\frac{3}{4}\)khi \(x=-\frac{1}{2}\)
d,\(2x^2-6x=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Dấu = xảy ra \(< =>x-\frac{3}{2}=0< =>x=\frac{3}{2}\)
Vậy \(D_{min}=-\frac{9}{2}\)khi \(x=\frac{3}{2}\)
Theo mình nghĩ thì phải là giá trị lớn nhất
A=-(x^2-4x+5)
A=-[(x-2)^2+1]
Mà (x-2)^2+1>=1
Nên A<=-1
B=-(x^2+6x-1)
B=-[(x+3)^2-10]
nên B<=10
C=-(x^2+3x+2)
C=-(x^2+3x+9/4-1/4)
C=-[(x+3/2)^2-1/4]
Nên C<=1/4
D=-(2x^2-3x+1)
D=-2(x^2-3x/2+1/2)
D=-2(x^2-3x/2+9/16-1/16)
D=-2[(x-3/2)^2-1/16]
Nên D<=1/8
Chúc bạn học tốt!
a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 = 9/4 <=> x = 3/2
b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy Min của x2 - 6x + 18 = 9 <=> x = 3
c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x
Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2
Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2
d) Ta có : x2 + y2 - 2x + 6y + 2019
= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009
= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y= -3
b)Ta có:\(B=\left(0,5x^2+x\right)^2-3\left|0,5x^2+x\right|\)
\(B=\left|0,5x^2+x\right|^2-3\left|0,5x^2+x\right|+\dfrac{9}{4}-\dfrac{9}{4}\)
\(B=\left(\left|0,5x^2+x\right|-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
"="<=>\(\left|0,5x^2+x\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
g)Ta có:\(G=\left(x^2+x-6\right)\left(x^2+x+2\right)\)
Đặt \(x^2+x-2=t\)
\(\Rightarrow G=\left(t-4\right)\left(t+4\right)\)
\(G=t^2-16\ge-16\)
"="<=>\(x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
E=\(x^4-6x^3+9x^2+x^2-6x+9\)
\(=x^2\left(x^2-6x+9\right)+x^2-6x+9\\ =x^2\left(x-3\right)^2+\left(x-3\right)^2\ge0\forall x\\ E_{min}=0\Leftrightarrow x=3\)
a/ \(\left(x-1\right)^2=x^2-2x+1\) nên chọn đáp án D
b/ \(\left(x+2\right)^2=x^2+4x+4\) nên chọn đáp án C
c/ \(\left(a-b\right)\left(b-a\right)=-\left(a-b\right)\left(a-b\right)=-\left(a-b\right)^2\) nên chọn đáp án A
d/ \(-x^2+6x-9=-\left(x^2-6x+9\right)=-\left(x-3\right)^2\) nên chọn đáp án D
Bài làm
a) A = x2 + 2y2 - 6x + 8y + 25
A = ( x2 + 6x + 9 ) + 2( y2 + 4y + 4 ) + 8
A = ( x + 3 )2 + 2( y + 2 )2 + 8 > 8
Dấu " = " xảy ra <=> x = -3 ; y = -2.
Vậy AMin = 8 khi x = -3; y = -2
Mấy câu sau tương tự, tự giải theo, bh duyệt bài bên lazi đây,
a, \(x^2-2x+3=x^2-x-x+1+2=\left(x-1\right)^2+2\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\)
với mọi giá trị của \(x\in R\).
Để \(\left(x-1\right)^2+2=2\) thì
\(\left(x-1\right)^2=0\Rightarrow x=1\)
Câu c tương tự.
b, \(4x^2+12x-5=4x^2+6x+6x+9-14=\left(2x+3\right)^2-14\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(2x+3\right)^2\ge0\Rightarrow\left(2x+3\right)^2-14\ge-14\)
với mọi giá trị của \(x\in R\).
Để \(\left(2x+3\right)^2-14=-14\) thì
\(\left(2x+3\right)^2=0\Rightarrow2x+3=0\Rightarrow x=-\dfrac{3}{2}\)
Vậy.......................
Câu d tương tự.
Chúc bạn học tốt!!!
\(D=x^2-4x-3\)
\(D=x^2-4x+4-7\)
\(D=\left(x-2\right)^2-7\ge-7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
\(E=x^2-6x+1\)
\(E=x^2-6x+9-8\)
\(E=\left(x-3\right)^2-8\ge-8\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
\(F=x^2+x+1\)
\(F=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(F=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)
\(G=x^2+x\)
\(G=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
\(G=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)
\(H=2x^2-4x+2018\)
\(H=2\left(x^2-2x+1009\right)\)
\(H=2\left(x^2-2x+1+1008\right)\)
\(H=2\left[\left(x-1\right)^2+1008\right]\)
\(H=2\left(x-1\right)^2+2016\ge2016\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
\(I=2x^2+y^2+2x+2xy+2019\)
\(I=\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+2018\)
\(I=\left(x+y\right)^2+\left(x+1\right)^2+2018\ge2018\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
a) \(A=x^2+x+2018\)
\(A=x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+2018\)
\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{8071}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{8071}{4}\ge\dfrac{8071}{4}\)
=> Amin = 8071/4 <=> x + 1/2 = 0
=> x = -1/2
Vậy Amin = 8071/4 <=> x = -1/2
b) \(B=2x^2+2x+2019\)
\(B=2\left(x^2+2x.\dfrac{1}{2}+\dfrac{2019}{2}\right)\)
\(B=2\left(x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{2019}{2}\right)\)
\(B=2\left(x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{4037}{4}\right)\)
\(B=2\left(x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{4037}{2}\)
\(B=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{4037}{2}\)
Vì \(2\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{1}{2}\right)^2+\dfrac{4037}{2}\ge\dfrac{4037}{2}\)
=> Bmin = 4037/2 <=> x + 1/2 = 0
=> x = -1/2
Vậy Bmin = 4037/2 <=> x = -1/2
c) \(C=x^2-4x+20\)
\(C=x^2-2.x.2+2^2+16\)
\(C=\left(x-2\right)^2+16\)
Vì \(\left(x-2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-2\right)^2+16\ge16\)
=> Cmin = 16 <=> x - 2 = 0
=> x = 2
Vậy Cmin = 16 <=> x = 2
d) Bài d mình chưa nghĩ ra, sorry vì kiến thức mình không rộng