Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=a^4-2a^3+3a^2-4a+5\)
\(A=\left(a^4-2a^3+a^2\right)+\left(2a^2-4a+2\right)+3\)
\(A=\left(a^2-a\right)^2+\left(\sqrt{2}a-\sqrt{2}\right)^2+3\)
Do \(\left(a^2-a\right)^2+\left(\sqrt{2}a-\sqrt{2}\right)^2\ge0\forall a\)
Nên \(\left(a^2-a\right)^2+\left(\sqrt{2}a-\sqrt{2}\right)^2+3\ge3\forall a\)
Dấy "=" xả ra khi a = 1
Vậy Min A = 3 khi a = 1
\(A=a^4-2a^3+3a^2-4a+5\)
\(=\left(a^4-2a^3+a^2\right)+\left(2a^2-4a+2\right)+3\)
\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
Dấu = xảy ra khi a = 1
A = (a4 - 2a3 + a2) + 2.(a2 - 2a + 1) + 3 = (a2 - a)2 + 2.(a - 1)2 + 3 > 0 + 2.0 + 3
Dấu "=" xảy ra khi a2 - a = 0 và a - 1 = 0 <=> a = 1
Vậy Min A = 3 tại a = 1
Ta có: \(\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\left(a+b+c\right)=1.\left(a+b+c\right)\)
=>\(\frac{a^2}{b+c}+\frac{a\left(b+c\right)}{b+c}+\frac{b^2}{a+c}+\frac{b\left(a+c\right)}{a+c}+\frac{c^2}{a+b}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)
=> \(\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c=a+b+c\)
=> \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
\(A=\left(a^2\right)^2-2a^3+2a^2+a^2-4a+2+3\\ =\left(\left(a^2\right)^2-2a^2a+a^2\right)+2\left(a^2-2a+1\right)+3\ge3\)
\(=a^2\left(a^2-2a+1\right)+2\left(a^2-2a+1\right)+3\ge3\\ =2a^2\left(a-1\right)^4+3\ge3\)
Vậy GTNN của biểu thức A là 3 tại \(a=0\)hoặc \(a=1\).
\(a^4-2a^3+3a^2-4a+5\)
\(=a^4-2a^3+a^2+2a^2-4a+2+3\)
\(=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)
\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
Dấu "=" xảy ra khi a = 1
Vậy với a = 1 thì \(A_{Min}=3\)
\(A=a^4-2a^3+3a^2-4a+5\)
\(=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)
\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
Dấu "=" xảy ra <=> a = 1
Vậy .......