\(4x^2-26x+30\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

Đề có sai ko bạn?

28 tháng 12 2017

A=4x2-26x+30

  =4x2-6x-20x+30

  =(4x2-6x)-(20x-30)

   =2x(2x-3)-10(2x-3)

   =(2x-3)(2x-10)

......................

mk bk lm đến đây thôi

  Chúc bạn học tốt!

6 tháng 1 2019

\(A=\frac{5x^2-26x+41}{\left(x-2\right)^2}=\frac{4\left(x^2-4x+4\right)+\left(x^2-10x+25\right)}{\left(x-2\right)^2}=4+\frac{\left(x-5\right)^2}{\left(x-2\right)^2}\ge4\forall x\)

Dấu "=" xảy ra khi \(x-5=0\Rightarrow x=5\)

Vậy GTNN của A là 4 khi x = 5

6 tháng 1 2019

a) \(\frac{5x^2-20x+20-6x+21}{\left(x-2\right)^2}=\frac{5\left(x^2-4x+4\right)-6\left(x-2\right)+9}{\left(x-2\right)^2}\)

=\(\frac{5\left(x-2\right)^2-6\left(x-2\right)+9}{\left(x-2\right)^2}=5-\frac{6}{\left(x-2\right)}+\frac{9}{\left(x-2\right)^2}=\left(\frac{3}{x-2}-1\right)^2+4\ge4\)

'=' xảy ra \(\Leftrightarrow\frac{3}{x-2}-1=0\Leftrightarrow x=5\)

Vậy ...

18 tháng 9 2020

a) \(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)

b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được 

\(B=4x^2+4x+11\)

\(=4\left(x^2+x+\frac{11}{4}\right)\)

\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)

\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)

\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

c) Tìm GTLN nhé 

 \(C=5-8x-x^2\)

\(=-x^2-2.x.4-16+16+5\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)

Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)

                     \(\Leftrightarrow x=-4\)

Vậy\(C_{max}=21\Leftrightarrow x=-4\)

18 tháng 9 2020

A = x2 - 2x + 5

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

B = 4x2 + 4x + 11

= ( 4x2 + 4x + 1 ) + 10

= ( 2x + 1 )2 + 10 ≥ 10 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = 5 - 8x - x2

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxC = 21 <=> x = -4

23 tháng 6 2017

a) Để x-x^2 bé nhất thì x^2 bé nhất => x^2 = 0 => x= 0

thay x =0 vào x-x^2 , có 0 - 0^2 = 0

Vậy giá trị bé nhất của x-x^2 =0 tại x= 0

b) 4x-x^2 ( làm như trên )

8 tháng 6 2019

\(Đặt:A=x-x^2\)

\(\Rightarrow-A=x^2-x\Rightarrow-A+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow-A\ge-\frac{1}{4}\Rightarrow A\le\frac{1}{4}\)

đó là max à nha

11 tháng 6 2017

a. x2 - 3x + 5

= x2 - 2.x.3/2 + 9/4 + 5 - 9/4

= (x - 3/2)2 + 11/4 \(\ge\)11/4

Vậy GTNN của biểu thức là 11/4 <=> x - 3/2 = 0 <=> x = 3/2

b. 4x2 + 4x + 2

= (2x)2 + 2.2x.1 + 1 + 1

= (2x + 1)2 + 1 \(\ge\)1

Vậy GTNN của biểu thức là 1 <=> 2x + 1 = 0 <=> x = -1/2

c. x2 - 20x + 101

= x2 - 2.x.10 + 100 + 1

= (x - 10)2 + 1 \(\ge\)1

Vậy GTNN của biểu thức là 1 <=> x - 10 = 0 <=> x = 10.

25 tháng 8 2016

1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)

Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)

Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5

2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)

\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)

Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)

Vậy giá trị lớn nhất của B là 8 khi x = 2

2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)

\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)

Đẳng thức xảy ra khi: 4x + 1 = 0  => x = -0,25

Vậy giá trị lớn nhất của C là 5 khi x = -0,25

23 tháng 6 2017

a) \(2x^2+y^2+4x-2y-2xy+10\)

\(=x^2+x^2+y^2+4x-2y-2xy+4+6\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)-2\left(y-3\right)\)

\(=\left(x-y\right)^2+\left(x+2\right)^2-2\left(y-3\right)\)

.......................chắc không phải cách làm này đâu!

b) \(5x^2+y^2+2xy-4x\)

\(=x^2+4x^2+y^2+2xy-4x\)

\(=\left(x^2+2xy+y^2\right)+x^2-4x\)

\(\left(x+y\right)^2+x^2-4x\)

20 tháng 3 2019

a, \(2x^2\)+\(y^2\)+\(4x-2y-2xy+10\)\(=y^2\)\(-x^2\)\(-1+2x-2y-2xy+3x^2+2x+11\)\(=\left(y-x-1^{ }\right)^2\)\(+3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{32}{3}\)\(=\left(y-x-1\right)^2+3\left(x+\frac{1}{3}\right)^2+\frac{32}{3}\)\(\ge\frac{32}{3}\)

VẬY GTNN CỦA BIỂU THỨC \(=\frac{32}{3}\)KHI \(y-x-1=0;x+\frac{1}{3}=0\Rightarrow x=\frac{-1}{3};y=\frac{2}{3}\)

11 tháng 12 2018

\(A=x^2-4x+1\)

\(A=x^2-4x+4-3=\left(x-4\right)^2-3\ge-3\)

Dấu = xảy ra khi \(x-4=0\)

\(\Rightarrow x=4\)

Vậy ...

b) \(4x^2+4x+11\)

\(\left(2x\right)^2+4x+1^2+10=\left(2x+1\right)^2+10\ge10\)

dấu = xảy ra khi \(2x+1=0\)

\(x=-\frac{1}{2}\)

Vậy....

11 tháng 12 2018

A=\(x^2-4x+1\)

=\(x^2-2.x.2+4-4+1\)

=\(\left(x-2\right)^2-3\ge-3\)              ( vì (x-2)^2 \(\ge0\)

Dấu "=" xảy ra khi và chỉ khi x-2=0

                                          <=> x=2

vậy GTNN của A là -3 khi x=2

B= \(4x^2+4x+11\)

 =\(\left(2x\right)^2+2.2x.1+1-1+11\)

 = \(\left(2x+1\right)^2-10\ge-10\)         ( vì \(\left(2x+1\right)^2\ge0\))

Dâu '=' xayr ra khii và chỉ khi 2x+1=0

                                      <=> 2x=-1

                                      <=> x = \(\frac{-1}{2}\)

Vậy GTNN của B là -10 khi x=\(\frac{-1}{2}\)

Chúc bạn buổi tối vui vẻ

15 tháng 12 2018

Cách làm là đây, bạn tự giải chi tiết

\(x^2-4x+1=\left(x-2\right)^2-3\ge-3\left(\forall x\right)\)

Dấu bằng xảy ra khi x=2

\(4x^2+4x+11=\left(2x+1\right)^2+10\ge10\left(\forall x\right)\)

Dấu bằng xảy ra khi x= -1/2

15 tháng 12 2018

\(\text{Đặt }A=x^2-4x+1\)

\(=x^2-2.2x+2^2-3=\left(x-2\right)^2-3\ge-3\)

 \(\text{Dấu bằng xảy ra khi: }x-2=0\)

\(\Rightarrow x=2.\text{Vậy min A=-3 khi x=2}\)

\(\text{Đặt }B=4x^2+4x+11\)

\(=\left(2x\right)^2+2.2x+1+10=\left(2x+1\right)^2+10\ge10\)

\(\text{Dấu bằng xảy ra khi: }2x+1=0\)

\(x=-\frac{1}{2}.Vay...\)