Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do \(\left|3x-1,23\right|\ge0\forall x\)
\(\Rightarrow A=3,14+\left|3x-1,23\right|\ge3,14\)
\(minA=3,14\Leftrightarrow x=0,41\)
b) Do \(B=\left|x-1,2\right|+\left|x-3,4\right|=\left|x-1,2\right|+\left|3,4-x\right|\ge\left|x-1,2+3,4-x\right|=2,2\)
\(minB=2,2\Leftrightarrow\) \(\left(x-1,2\right)\left(x-3,4\right)\ge0\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge3,4\\x\le1,2\end{matrix}\right.\)
1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath
2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
3/
a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0
=> 13-x = 1 => x = 12
Khi đó \(A=\frac{17}{13-12}=17\)
Vậy Amax = 17 khi x = 12
b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)
Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0
=>11-x=1 => x=10
Khi đó \(B=\frac{10}{11-10}=10\)
Vậy Bmax = 10 khi x=10
A=x4+3x2+2
Ta có :
\(x^4\ge0\forall x\) và \(3x^2\ge0\forall x\Rightarrow x^4+3x^2\ge0\forall x\)
\(\Rightarrow A=x^4+3x^2+2\ge2\forall x\) . Có GTNN là 2 khi x = 0
Vậy AMin = 2 <=> x = 0
B = (x4+5)2
Ta có :
\(x^4\ge0\forall x\Leftrightarrow x^4+5\ge5\forall x\)
\(\Rightarrow B=\left(x^4+5\right)^2\ge5^2=25\forall x\) . Có GTNN là 25 khi tại x = 0
Vậy BMin = 25 <=> x = 0
C=(x-1)2+(y+2)2
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\) nên C = \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\) . Có GTNN là 0 tại \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy CMin = = <=> x=1 , y=-2
ta có x^2, x^4 \(\ge\)0. lũy thừa với số mũ chẵn là số không âm
A = x^4 + 3x^2+2 \(\ge\)0 + 3.0+2 =2. Vậy GTNN là 2 khi x = 0
B = (x^4 + 5)^2 \(\ge\)(0+5)^2=5^2=25. Vậy GTNN của B là 25 khi x=0
Ta có (x-1)^2\(\ge\)0 và (y+2)^2 \(\ge\)0
C= (x-1)^2 + (y+2)^2 \(\ge\)0 + 0 = 0.
Vậy GTNN của C là 0
khi x-1=0 hay x=1
và y+2=0 hay hay y=-2
GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé
\(A=\left|3x-1.23\right|+3.14\ge3.14\forall x\)
Dấu '=' xảy ra khi x=0,41