Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)\(F=x^2+26y^2-10xy+14x-76y+59\)
\(=\left(x^2-2\cdot x\cdot5y+25y^2\right)+\left(14x-70y\right)+\left(y^2-6x+9\right)+50\)
\(=[\left(x-5y\right)^2+14\left(x-5y\right)+49]+\left(y-3\right)^2+1\)
\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\)
Để Fmin=1 thì y=3;x=8
b)\(H=m^2-4mp+5p^2+10m-22p+28\)
\(=\left(m^2-2\cdot m\cdot2p+4p^2\right)+\left(10m-20p\right)+\left(p^2-2p+1\right)+27\)
\(=[\left(m-2p\right)^2+2\cdot\left(m-2p\right)\cdot5+25]+\left(p-1\right)^2+2\)
\(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)
Để Hmin=2 thì p=1;m=-3
A= (6x-2)^2 + (2-5x)^2+2(6x-2)(2-5x)
= (6x-2)^2 +2(6x-2)(2-5x)+ (2-5x)^2
\(=\left(6x-2+2-5x\right)^2=x^2\)
B= (2a^2+2a+1)(2a^2-2a+1)-(2a^2+1)^2
\(=\left(2a^2+1\right)^2-4a^2-\left(2a^2+1\right)^2=4a^2\)
C=(x+3)(x^2-3x+9)-(54+x^3)
\(=\left(x^3+27\right)-54-x^3=27\)
D=(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
\(=\left(2x+y\right)^3-\left(2x-y\right)^3\)
E=(a+b)^2-(a-b)^2
\(=\left(a+b+a-b\right)\left(a+b-a+b\right)=2a.2b=4ab\)
Secret Personv: thật.CTV lạ z
\(C=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3-27-54-x^3=-81\)
a.Ta có:\(2x^2-4xy+4y^2+2x+1=0\)
\(\Rightarrow\left[x^2-2x\left(2y\right)+\left(2y\right)^2\right]+\left(x^2+2x+1\right)=0\)
\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi x-2y=0 và x+1=0
Suy ra x=-1;y=-1/2
b.Ta có:\(x^2-6x+y^2-6y+21=3\)
\(\Rightarrow\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+3-3=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-3\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi x-3=y-3=0
Suy ra x=y=3
c.Ta có:\(2x^2-8x+y^2-2xy+16=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-4\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi:x-y=x-4=0
Suy ra x=y=4
a) 2x2 - 4xy + 4y2 + 2x + 1 = 0
<=> x2 - 4xy + 4y2 + x2 + 2x + 1 = 0
<=> ( x - 2y )2 + ( x + 1 )2 = 0
<=> \(\hept{\begin{cases}x-2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-\frac{1}{2}\end{cases}}\)
b) x2 - 6x + y2 - 6y + 21 = 3
<=> x2 - 6x + y2 - 6y + 21 - 3 = 0
<=> x2 - 6x + y2 - 6y + 18 = 0
<=> x2 - 6x + 9 + y2 - 6y + 9 = 0
<=> ( x - 3 )2 + ( y - 3 )2 = 0
<=> \(\hept{\begin{cases}x-3=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)
c) 2x2 - 8x + y2 - 2xy + 16 = 0
<=> x2 - 2xy + y2 + x2 - 8x + 16 = 0
<=> ( x - y )2 + ( x - 4 )2 = 0
<=> \(\hept{\begin{cases}x-y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\end{cases}}\)
a) VÌ 2x2 + y2 - 2y - 6x + 2xy + 5 = 0 nên
2(2x2 + y2 - 2y - 6x + 2xy + 5) = 0
4x^2+2y^2-4y-12x+4xy+10=0
(4x^2+4xy+y^2)-6(2x+y)+9+(y^2-2y+1)=0
(2x+y)^2-6(2x+y)+9+(y-1)^2=0
(2x+y-3)^2+(y-1)^2=0(*)
vì (2x+y-3)^2>=0 và(Y-1)^2>=0nên (*) xảy ra khi
(2x+y-3)^2=0<=>2x-2=0<=>x=1
(Y-1)^2=0<=>y=1
\(A=2x^2+y^2-2xy-2x+y-12\)
\(A=\left(x^2-2xy+y^2\right)+x^2-2x+y-12\)
\(A=\left[\left(x-y\right)^2-2\left(x-y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2-x+\frac{1}{4}\right)-\frac{25}{2}\)
\(A=\left(x-y-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2-\frac{25}{2}\)
Do \(\left(x-y-\frac{1}{2}\right)^2\ge0\forall x;y\)
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A\ge-\frac{25}{2}\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y-\frac{1}{2}=0\\x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)
Vậy \(A_{Min}=-\frac{25}{2}\Leftrightarrow\left(x;y\right)=\left(\frac{1}{2};0\right)\)
\(A=-2x^2-y^2-2xy-2x+y-12\)
\(-A=2x^2+y^2+2xy+2x-y+12\)
\(-A=\left(x^2+2xy+y^2\right)+x^2+2x-y+12\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2+3x+\frac{9}{4}\right)+\frac{19}{2}\)
\(-A=\left(x+y-\frac{1}{2}\right)^2+\left(x+\frac{3}{2}\right)^2+\frac{19}{2}\)
Do \(\left(x+y-\frac{1}{2}\right)^2\ge0\forall x;y\)
\(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge\frac{19}{2}\Leftrightarrow A\le-\frac{19}{2}\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x+y-\frac{1}{2}=0\\x+\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=2\end{cases}}\)
Vậy \(A_{Max}=-\frac{19}{2}\Leftrightarrow\left(x;y\right)=\left(-\frac{3}{2};2\right)\)