K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left|2x-2\right|+\left|2x-2003\right|\)

\(=\left|2x-2\right|+\left|2003-2x\right|\)

=>\(A>=\left|2x-2+2003-2x\right|=2001\)

Dấu '=' xảy ra khi (2x-2)(2x-2003)<=0

TH1: \(\left\{{}\begin{matrix}2x-2>=0\\2x-2003< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=1\\x< =\dfrac{2003}{2}\end{matrix}\right.\)

=>\(1< =x< =\dfrac{2003}{2}\)

TH2: \(\left\{{}\begin{matrix}2x-2< =0\\2x-2003>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x>=2003\\2x< =2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2003}{2}\\x< =1\end{matrix}\right.\Leftrightarrow Loại\)

Vậy: \(A_{min}=2001\) khi 1<=x<=2003/2

11 tháng 1 2016

2011 , tick mình đi năn nỉ đó 

18 tháng 7 2015

A=|2x-2|+|2x-2013| có giá trị nhỏ nhất => 2x-2= 0 hoặc 2x-2013=0

Mà x là 1 số nguyên => 2x-2= 0 => x=1

18 tháng 7 2015

 

A=|2x-2|+|2x-2013|

=|2x-2|+|2013-2x|\(\ge\)|2x-2+2013-2x|=2011

Dấu "=" xãy ra khi:

(2x-2)(2013-2x)\(\ge\)0

TH1: 2x-1\(\ge\)0 và 2013-2x\(\ge\)0

x\(\ge\)1/2 và x\(\ge\)2013/2

=>x\(\ge\)2013/2

TH2: 2x-1\(\le\)0 và 2013-2x\(\le\)0

x\(\le\)1/2 và x\(\le\)2013/2

=>x\(\le\)1/2

từ 2 TH suy ra không có giá trị nào của x thỏa mãn A nhỏ nhất

 

4 tháng 10 2019

\(A=|2x-2|+|2x-2013|\)

\(=|2x-2|+|2013-2x|\ge|2x-2+2013-2x|\)

\(\Rightarrow A\ge2011\)

Dấu "="xảy ra \(\Leftrightarrow\left(2x-2\right)\left(2013-2x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}2x-2\ge0\\2013-2x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}2x-2< 0\\2013-2x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2013}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>\frac{2013}{2}\end{cases}}\)( loại )

\(\Leftrightarrow1\le x\le\frac{2013}{2}\)mà \(x\in Z\)

\(\Rightarrow x\in\left\{1;2;...;1006\right\}\)

Vậy \(A_{min}=2011\)\(\Leftrightarrow x\in\left\{1;2;...;1006\right\}\)

4 tháng 10 2019

giúp mình với các bạn ơi

mình sắp phải nộp rồi

21 tháng 12 2016

\(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) , ta có:

\(A\ge\left|2x-2+2013-2x\right|=2011\)

Vậy GTNN của A là 2011 khi \(\begin{cases}2x-2\ge0\\2013-2x\ge0\end{cases}\)\(\Leftrightarrow1\le x\le\frac{2013}{2}\)

21 tháng 12 2016

trả lời giúp mình với hôm nay mình thi rồi

29 tháng 3 2021

A = | 2x - 2 | + | 2x - 2013 |

= | 2x - 2 | + | 2013 - 2x |

≥ | 2x - 2 + 2013 - 2x | = | 2011 | = 2011

Đẳng thức xảy ra <=> ( 2x - 2 )( 2013 - 2x ) ≥ 0 => 1 ≤ x ≤ 2013/2

Vậy ...

24 tháng 2 2019

Áp dụng bất đẳng thức trị tuyệt đối,ta có:

\(\left|2x+2\right|+\left|2x-2019\right|=\left|2x+2\right|+\left|2019-2x\right|\)

\(\ge\left|2x+2+2019-2x\right|\)

\(=2021\)

Dấu bằng xảy ra khi và chỉ khi:

\(\left(2x+2\right)\left(2x-2019\right)\ge0\)

\(\Rightarrow-1\le x\le\frac{2019}{2}\)

\(\Rightarrow-1\le x\le1009\)

Vậy \(A_{min}=2021\Leftrightarrow-1\le x\le1009\)

20 tháng 11 2019

zZz Phan Gia Huy zZz

Dấu \("="\Leftrightarrow-1\le x\le1009,5\)

27 tháng 10 2023

a) 2ˣ + 2ˣ⁺³ = 72

2ˣ.(1 + 2³) = 72

2ˣ.9 = 72

2ˣ = 72 : 9

2ˣ = 8

2ˣ = 2³

x = 3

b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)

Ta có:

x - 2 = x + 1 - 3

Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)

⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}

⇒ x ∈ {-4; -2; 0; 2}

Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên

c) P = |2x + 7| + 2/5

Ta có:

|2x + 7| ≥ 0 với mọi x ∈ R

|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R

Vậy GTNN của P là 2/5 khi x = -7/2

25 tháng 8 2021

\(A=\left|x-2002\right|+\left|x-2003\right|=\left|x-2002\right|+\left|2003-x\right|\ge\left|-2002+2003\right|=1\)

Dấu ''='' xảy ra khi \(\left(x-2002\right)\left(2003-x\right)\ge0\Leftrightarrow2002\le x\le2003\)

Vậy GTNN của A bằng 1 tại 2002 =< x =< 2003 

\(B=5,5-\left|2x-5\right|\le5,5\)

Dấu ''='' xảy ra khi x = 5/2

Vậy GTLN của B bằng 5,5 tại x = 5/2 

27 tháng 5 2018

vào phần câu hỏi tương tự là có đáp án nhek bn

27 tháng 5 2018

Ta có \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\)

Ta thấy \(A=\left|2x-2\right|+\left|2013-x\right|\ge\left|2x-2+2013-2x\right|=2011\) ra

Dấu " = " xảy ra khi và chỉ khi \(\left(2x-2\right).\left(2013-2x\right)\ge0\)

\(\Leftrightarrow\frac{2013}{2}\ge x\ge1\)

Vậy .....