Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=|2x-2|+|2x-2013| có giá trị nhỏ nhất => 2x-2= 0 hoặc 2x-2013=0
Mà x là 1 số nguyên => 2x-2= 0 => x=1
A=|2x-2|+|2x-2013|
=|2x-2|+|2013-2x|\(\ge\)|2x-2+2013-2x|=2011
Dấu "=" xãy ra khi:
(2x-2)(2013-2x)\(\ge\)0
TH1: 2x-1\(\ge\)0 và 2013-2x\(\ge\)0
x\(\ge\)1/2 và x\(\ge\)2013/2
=>x\(\ge\)2013/2
TH2: 2x-1\(\le\)0 và 2013-2x\(\le\)0
x\(\le\)1/2 và x\(\le\)2013/2
=>x\(\le\)1/2
từ 2 TH suy ra không có giá trị nào của x thỏa mãn A nhỏ nhất
\(A=|2x-2|+|2x-2013|\)
\(=|2x-2|+|2013-2x|\ge|2x-2+2013-2x|\)
\(\Rightarrow A\ge2011\)
Dấu "="xảy ra \(\Leftrightarrow\left(2x-2\right)\left(2013-2x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}2x-2\ge0\\2013-2x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}2x-2< 0\\2013-2x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2013}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>\frac{2013}{2}\end{cases}}\)( loại )
\(\Leftrightarrow1\le x\le\frac{2013}{2}\)mà \(x\in Z\)
\(\Rightarrow x\in\left\{1;2;...;1006\right\}\)
Vậy \(A_{min}=2011\)\(\Leftrightarrow x\in\left\{1;2;...;1006\right\}\)
\(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\)
Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) , ta có:
\(A\ge\left|2x-2+2013-2x\right|=2011\)
Vậy GTNN của A là 2011 khi \(\begin{cases}2x-2\ge0\\2013-2x\ge0\end{cases}\)\(\Leftrightarrow1\le x\le\frac{2013}{2}\)
A = | 2x - 2 | + | 2x - 2013 |
= | 2x - 2 | + | 2013 - 2x |
≥ | 2x - 2 + 2013 - 2x | = | 2011 | = 2011
Đẳng thức xảy ra <=> ( 2x - 2 )( 2013 - 2x ) ≥ 0 => 1 ≤ x ≤ 2013/2
Vậy ...
Áp dụng bất đẳng thức trị tuyệt đối,ta có:
\(\left|2x+2\right|+\left|2x-2019\right|=\left|2x+2\right|+\left|2019-2x\right|\)
\(\ge\left|2x+2+2019-2x\right|\)
\(=2021\)
Dấu bằng xảy ra khi và chỉ khi:
\(\left(2x+2\right)\left(2x-2019\right)\ge0\)
\(\Rightarrow-1\le x\le\frac{2019}{2}\)
\(\Rightarrow-1\le x\le1009\)
Vậy \(A_{min}=2021\Leftrightarrow-1\le x\le1009\)
zZz Phan Gia Huy zZz
Dấu \("="\Leftrightarrow-1\le x\le1009,5\)
a) 2ˣ + 2ˣ⁺³ = 72
2ˣ.(1 + 2³) = 72
2ˣ.9 = 72
2ˣ = 72 : 9
2ˣ = 8
2ˣ = 2³
x = 3
b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)
Ta có:
x - 2 = x + 1 - 3
Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ x ∈ {-4; -2; 0; 2}
Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên
c) P = |2x + 7| + 2/5
Ta có:
|2x + 7| ≥ 0 với mọi x ∈ R
|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R
Vậy GTNN của P là 2/5 khi x = -7/2
\(A=\left|x-2002\right|+\left|x-2003\right|=\left|x-2002\right|+\left|2003-x\right|\ge\left|-2002+2003\right|=1\)
Dấu ''='' xảy ra khi \(\left(x-2002\right)\left(2003-x\right)\ge0\Leftrightarrow2002\le x\le2003\)
Vậy GTNN của A bằng 1 tại 2002 =< x =< 2003
\(B=5,5-\left|2x-5\right|\le5,5\)
Dấu ''='' xảy ra khi x = 5/2
Vậy GTLN của B bằng 5,5 tại x = 5/2
Ta có \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\)
Ta thấy \(A=\left|2x-2\right|+\left|2013-x\right|\ge\left|2x-2+2013-2x\right|=2011\) ra
Dấu " = " xảy ra khi và chỉ khi \(\left(2x-2\right).\left(2013-2x\right)\ge0\)
\(\Leftrightarrow\frac{2013}{2}\ge x\ge1\)
Vậy .....
\(A=\left|2x-2\right|+\left|2x-2003\right|\)
\(=\left|2x-2\right|+\left|2003-2x\right|\)
=>\(A>=\left|2x-2+2003-2x\right|=2001\)
Dấu '=' xảy ra khi (2x-2)(2x-2003)<=0
TH1: \(\left\{{}\begin{matrix}2x-2>=0\\2x-2003< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=1\\x< =\dfrac{2003}{2}\end{matrix}\right.\)
=>\(1< =x< =\dfrac{2003}{2}\)
TH2: \(\left\{{}\begin{matrix}2x-2< =0\\2x-2003>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x>=2003\\2x< =2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{2003}{2}\\x< =1\end{matrix}\right.\Leftrightarrow Loại\)
Vậy: \(A_{min}=2001\) khi 1<=x<=2003/2