Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
Bài giải
\(C=\left(x+1\right)^2+\left(1-2y\right)^2+5\)
Vì \(\left(x+1\right)^2\ge0\) Dấu " = " xảy ra khi \(\left(x+1\right)^2=0\text{ }\Rightarrow\text{ }x+1=0\text{ }\Rightarrow\text{ }x=-1\)
\(\left(1-2y\right)^2\ge0\)Dấu " = " xảy ra khi \(\left(1-2y\right)^2=0\text{ }\Rightarrow\text{ }1-2y=0\text{ }\Rightarrow\text{ }2y=1\text{ }\Rightarrow\text{ }y=\frac{1}{2}\)
\(\Rightarrow\text{ }C=\left(x+1\right)^2+\left(1-2y\right)^2+5\ge0+0+5\ge5\)
\(\Rightarrow\text{ Min C = }5\text{ khi }x=-1\text{ , }y=\frac{1}{2}\)
Bài giải
\(D=-277-\left(x-y\right)^2-\left|3y+9\right|\)
Vì \(\left(x-y\right)^2\ge0\) Dấu " = " xảy ra khi \(\left(x-y\right)^2=0\text{ }\Rightarrow\text{ }x-y=0\text{ }\Rightarrow\text{ }x=y\)
\(\left|3y+9\right|\ge0\text{ }\) Dấu " = " xảy ra khi \(\left|3y+9\right|=0\text{ }\Rightarrow\text{ }3y+9=0\text{ }\Rightarrow\text{ }3y=-9\text{ }\Rightarrow\text{ }y=-9\text{ : }3\text{ }\Rightarrow\text{ }y=-3\)
\(\Rightarrow\text{ }x=y=-3\)
\(\Rightarrow\text{ }B=-277-\left(x-y\right)^2-\left|3y+9\right|\le-277-0-0=-277\)
\(\Rightarrow\text{ }\text{Max D = }-277\text{ khi }x=y=-3\)
Ta có :
\(\left(x+y-3\right)^4\ge0\) \(\left(\forall x,y\inℚ\right)\)
\(\left(x-2y\right)^2\ge0\) \(\left(\forall x,y\inℚ\right)\)
\(\Rightarrow\)\(\left(x+y-3\right)^4+\left(x-2y\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-3\right)^4=0\\\left(x-2y\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-3=0\\x-2y=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=3\\x+y-3y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=3\\x+y=3y\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=3-y\\3=3y\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\y=1\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=3-1\\y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)
Vậy \(A_{min}=2018\) khi \(x=2\) và \(y=1\)
Chúc bạn học tốt ~
Ta có \(\left(x+y-3\right)^4\ge0\) với mọi giá trị của x
\(\left(x-2y\right)^2\ge0\)với mọi giá trị của x
=> \(\left(x+y-3\right)^4+\left(x-2y\right)^2\ge0\)với mọi giá trị của x
=> \(\left(x+y-3\right)^4+\left(x-2y\right)^2+2018\ge2018\)với mọi gt của x
=> GTNN của A là 2018.
\(a,x+y=54\)
Ap dụng tính chất DTSBN ta có
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{54}{9}=6\)
\(\hept{\begin{cases}\frac{x}{4}=6\\\frac{y}{5}=6\end{cases}\Rightarrow\hept{\begin{cases}x=24\\y=30\end{cases}}}\)
\(b,3x-2y=8\)
Ta có
\(\frac{x}{4}=\frac{y}{5}\Rightarrow\frac{3x}{12}=\frac{2y}{10}\)
Aps dụng tính chất DTSBN ta có
\(\frac{3x}{12}=\frac{2y}{10}=\frac{3x-2y}{12-10}=\frac{8}{2}=4\)
\(\hept{\begin{cases}\frac{x}{4}=4\\\frac{y}{5}=4\end{cases}\Rightarrow\hept{\begin{cases}x=16\\y=20\end{cases}}}\)
\(c,x\cdot y=80\)
Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=4k\\y=5k\end{cases}}\)
Ta có
\(x\cdot y=4k\cdot5k=80\)
\(\Rightarrow20k^2=80\)
\(\Rightarrow k^2=80:20=4\)
\(\Rightarrow k=\pm2\)
Với \(k=2\Rightarrow\hept{\begin{cases}x=4\cdot2\\y=5\cdot2\end{cases}\Rightarrow\hept{\begin{cases}x=8\\y=10\end{cases}}}\)
Với \(k=-2\Rightarrow\hept{\begin{cases}x=-2\cdot4\\y=-2\cdot5\end{cases}\Rightarrow\hept{\begin{cases}x=-8\\y=-10\end{cases}}}\)
a: \(A=-\left(x^2+5\right)-\left|x-2y\right|+2018=-x^2-\left|x-2y\right|+2013\le2013\)
Dấu '=' xảy ra khi x=0và y=0
b: \(B=\left(x+2y\right)^2+\left(x-3\right)^2+19\ge19\)
Dấu '=' xảy ra khi x=3 và y=-3/2