\(^2\)+5)-/x-2y/

Tìm GTLN của B=19+(x+2y)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=-\left(x^2+5\right)-\left|x-2y\right|+2018=-x^2-\left|x-2y\right|+2013\le2013\)

Dấu '=' xảy ra khi x=0và y=0

b: \(B=\left(x+2y\right)^2+\left(x-3\right)^2+19\ge19\)

Dấu '=' xảy ra khi x=3 và y=-3/2

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

9 tháng 1 2020

                                         Bài giải

\(C=\left(x+1\right)^2+\left(1-2y\right)^2+5\)

Vì \(\left(x+1\right)^2\ge0\) Dấu " = " xảy ra khi \(\left(x+1\right)^2=0\text{ }\Rightarrow\text{ }x+1=0\text{ }\Rightarrow\text{ }x=-1\)

\(\left(1-2y\right)^2\ge0\)Dấu " = " xảy ra khi \(\left(1-2y\right)^2=0\text{ }\Rightarrow\text{ }1-2y=0\text{ }\Rightarrow\text{ }2y=1\text{ }\Rightarrow\text{ }y=\frac{1}{2}\)

\(\Rightarrow\text{ }C=\left(x+1\right)^2+\left(1-2y\right)^2+5\ge0+0+5\ge5\)

\(\Rightarrow\text{ Min C = }5\text{ khi }x=-1\text{ , }y=\frac{1}{2}\)

                                                      Bài giải

\(D=-277-\left(x-y\right)^2-\left|3y+9\right|\)

Vì \(\left(x-y\right)^2\ge0\) Dấu " = " xảy ra khi \(\left(x-y\right)^2=0\text{ }\Rightarrow\text{ }x-y=0\text{ }\Rightarrow\text{ }x=y\)

\(\left|3y+9\right|\ge0\text{ }\) Dấu " = " xảy ra khi \(\left|3y+9\right|=0\text{ }\Rightarrow\text{ }3y+9=0\text{ }\Rightarrow\text{ }3y=-9\text{ }\Rightarrow\text{ }y=-9\text{ : }3\text{ }\Rightarrow\text{ }y=-3\)

\(\Rightarrow\text{ }x=y=-3\)

\(\Rightarrow\text{ }B=-277-\left(x-y\right)^2-\left|3y+9\right|\le-277-0-0=-277\)

\(\Rightarrow\text{ }\text{Max D = }-277\text{ khi }x=y=-3\)

31 tháng 3 2018

Ta có : 

\(\left(x+y-3\right)^4\ge0\) \(\left(\forall x,y\inℚ\right)\)

\(\left(x-2y\right)^2\ge0\) \(\left(\forall x,y\inℚ\right)\)

\(\Rightarrow\)\(\left(x+y-3\right)^4+\left(x-2y\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-3\right)^4=0\\\left(x-2y\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-3=0\\x-2y=0\end{cases}}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=3\\x+y-3y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=3\\x+y=3y\end{cases}}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=3-y\\3=3y\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\y=1\end{cases}}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=3-1\\y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)

Vậy \(A_{min}=2018\) khi \(x=2\) và \(y=1\)

Chúc bạn học tốt ~ 

31 tháng 3 2018

Ta có \(\left(x+y-3\right)^4\ge0\) với mọi giá trị của x

\(\left(x-2y\right)^2\ge0\)với mọi giá trị của x

=> \(\left(x+y-3\right)^4+\left(x-2y\right)^2\ge0\)với mọi giá trị của x

=> \(\left(x+y-3\right)^4+\left(x-2y\right)^2+2018\ge2018\)với mọi gt của x

=> GTNN của A là 2018.

30 tháng 9 2019

\(a,x+y=54\)

Ap dụng tính chất DTSBN ta có

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{54}{9}=6\)

\(\hept{\begin{cases}\frac{x}{4}=6\\\frac{y}{5}=6\end{cases}\Rightarrow\hept{\begin{cases}x=24\\y=30\end{cases}}}\)

\(b,3x-2y=8\)

Ta có

\(\frac{x}{4}=\frac{y}{5}\Rightarrow\frac{3x}{12}=\frac{2y}{10}\)

Aps dụng tính chất DTSBN ta có

\(\frac{3x}{12}=\frac{2y}{10}=\frac{3x-2y}{12-10}=\frac{8}{2}=4\)

\(\hept{\begin{cases}\frac{x}{4}=4\\\frac{y}{5}=4\end{cases}\Rightarrow\hept{\begin{cases}x=16\\y=20\end{cases}}}\)

\(c,x\cdot y=80\)

Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=4k\\y=5k\end{cases}}\)

Ta có

\(x\cdot y=4k\cdot5k=80\)

\(\Rightarrow20k^2=80\)

\(\Rightarrow k^2=80:20=4\)

\(\Rightarrow k=\pm2\)

Với \(k=2\Rightarrow\hept{\begin{cases}x=4\cdot2\\y=5\cdot2\end{cases}\Rightarrow\hept{\begin{cases}x=8\\y=10\end{cases}}}\)

Với \(k=-2\Rightarrow\hept{\begin{cases}x=-2\cdot4\\y=-2\cdot5\end{cases}\Rightarrow\hept{\begin{cases}x=-8\\y=-10\end{cases}}}\)

2 tháng 2 2019

Nhác quá mấy bài này hỏi làm j