K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

A=(x.(x-7)).((x-3)(x-4))

A=(x^2-7x)(x^2-7x+12)

dat a=x^2-7x ta co

A=a(a+12)

A=a^2+12a+36-36

A=(a+6)^2-36

=>Amin=-36

30 tháng 4 2018
Thiếu x=?
AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

7 tháng 8 2021

 A=x(x-3)(x-4)(x-7)-48

=(x2-7x)(x2-7x+12)-48

đặt x2-7x+6=t

=> A=(t+6)(t-6)-48 =t2-36 -48

=> t2\(\ge\)0 với mọi t \(\in\)R
=> A\(\ge\)-84

Dấu "=" xảy ra <=> t2=0

<=> t=0

<=>  x2-7x+6=0

<=> x=1: x=6

Vậy GTNN của A là -84 <=> x=1 hoặc x=6

9 tháng 9 2016

\(A=\left(x^2-7x\right)\left(x^2-7x+12\right)\)

Đặt \(x^2-7x+6=y\) thì \(A=\left(y-6\right)\left(y+6\right)\)

                                            \(=y^2-36\ge-36\)

Vậy \(MIN_A=-36\Leftrightarrow y=0\Leftrightarrow x^2-7x+6\)

                                                \(\Leftrightarrow\begin{cases}x=1\\x=6\end{cases}\)

6 tháng 11 2019

\(A=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)

\(=\left[x\left(x-7\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]\)

\(=\left[x^2-7x\right]\left[x^2-7x+12\right]\)

Đặt: \(t=x^2-7x\)

=> \(A=t\left(t+12\right)=t^2+12t+36-36\)

\(=\left(t+6\right)^2-36\ge-36\)

Dấu "=" xảy ra <=> \(t=-6\)

khi đó: \(x^2-7x=-6\Leftrightarrow x^2-x-6x+6=0\)

<=> \(x\left(x-1\right)-6\left(x-1\right)=0\)

<=> (x - 6 ) ( x -  1) =0

<=> x = 6 hoặc x =1

Vậy GTNN của A là -36  đạt tại x =6 hoặc x =1 .

b) \(B=x^2+xy-y^2-3x-3y\)

Xem lại đề nhé \(y^2\)hay \(-y^2\)?

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha