K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

tfrcducdc

20 tháng 2 2020

Để A có Giá trị nhỏ nhất 

=> |x+5| là số nguyên dương nhỏ nhất

=>|x+5|=0

=>x+5=0

=>x=-5

Thay x vào A, ta được:

A=0+2-(-5)

=>A=7

Vậy A đạt GTNN là 7 tại x = -5

11 tháng 10 2015

A có GTNN <=> |x - 2| hoặc |x - 3| có GTNN

<=> |x - 2| = 0 hoặc |x - 3| = 0

<=> x = 2 hoặc x = 3

Khi đó A = 5 có GTNN tại x = 2 hoặc x = 3

11 tháng 10 2015

có mk báo vì :1<2,3<5=> x=2,3

x= 3=> A=5

x=2=> A=5

cô mk bao vây đây là cách chùng mình mà đám học trò nghĩ ra

12 tháng 11 2019

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

7 tháng 10 2016

câu 1 sai đề

2. =9/3 vì căn x-5 lớn hơn hoặc bằng 0

10 tháng 11 2019

a)Vì  \(|x-2|\ge0;\forall x\)

\(\Rightarrow|x-2|+5\ge0+5;\forall x\)

Hay \(A\ge5;\forall x\)

Dấu"="xảy ra \(\Leftrightarrow|x-2|=0\)

                      \(\Leftrightarrow x=2\)

Vậy \(A_{min}=5\)\(\Leftrightarrow x=2\)

b) Vì \(-|x+4|\le0;\forall x\)

\(\Rightarrow12-|x+4|\le12;\forall x\)

Hay \(B\le12;\forall x\)

Dấu"=" xayra \(\Leftrightarrow|x+4|=0\)

                       \(\Leftrightarrow x=-4\)

Vậy MAX \(B=12\)\(\Leftrightarrow x=-4\)

a, Ta có :

\(\left|x-2\right|\ge0\forall x\)

\(\Rightarrow\left|x-2\right|+5\ge5\forall x\)

Mà \(A=\left|x-2\right|+5\)

\(\Rightarrow A\ge5\forall x\)

\(\Rightarrow MinA=5\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(MinA=5\Leftrightarrow x=2\)

11 tháng 2 2016

A=lx+5l+2-x (1)

Để A có GTNN thì lx+5l có GTNN

Ta thấy: lx+5l > 0 với mọi x

Dấu "=" xảy ra là GTNN của lx+5l

=> lx+5l = 0

=> x+5=0 => x = -5

Thay x = -5; lx+5l=0 vào (1) ta được:

A= 0 + 2 + 5 =7

Vậy MinA=7 khi mà chỉ khi x=-5

11 tháng 2 2018

\(\sqrt{g}\)

\(A=\left|x+2\right|+\left|x+1\right|+\left|2x-5\right|\ge\left|x+2+x+1\right|+\left|2x-5\right|=\left|2x+3\right|+\left|5-2x\right|\)

\(\ge\left|2x+3+5-2x\right|=\left|8\right|=8\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+2\right)\left(x+1\right)\ge0\left(1\right)\\\left(2x+3\right)\left(5-2x\right)\ge0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x+2\ge0\\x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\ge-1\end{cases}\Leftrightarrow}x\ge-1}\)

TH2 : \(\hept{\begin{cases}x+2\le0\\x+1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-2\\x\le-1\end{cases}\Leftrightarrow}x\le-2}\)

\(\left(2\right)\)

TH1 : \(\hept{\begin{cases}2x+3\ge0\\5-2x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{-3}{2}\\x\le\frac{5}{2}\end{cases}\Leftrightarrow}\frac{-3}{2}\le x\le\frac{5}{2}}\)

TH2 : \(\hept{\begin{cases}2x+3\le0\\5-2x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le\frac{-3}{2}\\x\ge\frac{5}{2}\end{cases}}}\) ( loại ) 

Vậy GTNN của \(A\) là \(8\) khi \(-1\le x\le\frac{5}{2}\)

... 

31 tháng 12 2018

cảmơn nhá

16 tháng 3 2019

+) Xét Ix-1I + Ix-5I

Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:

\(|x-1|+|x-5|\ge|x-1-x+5|=4\)

Dấu "=" xảy ra khi (x-1)(x-5) \(\le\)0

+) Xét Ix-2I + Ix-4I

Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:

\(|x-2|+|x-4|\ge|x-2-x+4|=2\)

Dấu "=" xảy ra khi (x-2)(x-4) \(\le\)0

+) Xét Ix-3I

Vì Ix-3I\(\ge\)

Dấu "=' xảy ra khi x-3=0 hay x=3

Suy ra: A = Ix-1I + Ix-2I + Ix-3I + Ix-4I + Ix-5I + 2019 \(\ge\)4+2+0+2019 = 2025

Dấu"=" xảy ra khi x=3

Vậy gtnn của A là 2025 tại x=3

16 tháng 3 2019

khi làm bài dạng này cần xét từng cặp có độ "chênh đơn vị" nhỏ dần,rồi đến cái cuối cùng xét riêng nó lấy x,đó là gt đúng của x

2 tháng 7 2019

Nhầm đề \(A=\left|x+5\right|+2-x\)

\(A=|x+5|+2-x\)

\(\hept{\begin{cases}x+5=0\\2-x=0\end{cases}}=>x=\hept{\begin{cases}x=-5\\x=2\end{cases}}\)

Gía trị nhỏ nhất của A là 

\(|-5+5|=2-2\)

\(|0|=0\)

=>=0

GTLN của A  ngược lại ( chắc thế )

3 tháng 9 2016

1,

Có \(\sqrt{x}\ge0\)với mọi x

=> 2 + \(\sqrt{x}\ge\)2 với mọi x

=> A \(\ge\)2 với mọi x

Dấu "=" xảy ra <=> \(\sqrt{x}=0\)<=> x = 0

KL: Amin = 2 <=> x = 0

2, (câu này phải là GTLN chứ nhỉ)

Có \(\sqrt{x-1}\ge0\)với mọi x

=> \(2.\sqrt{x-1}\ge0\)với mọi x

=> \(5-2.\sqrt{x-1}\le5\)với mọi x

=> B \(\le\)5 với mọi x

Dấu "=" xảy ra <=> \(\sqrt{x-1}=0\)<=> x - 1 = 0 <=> x = 1

KL Bmax = 5 <=> x = 1

\(\sqrt{x}\ge0\)

\(\Rightarrow A=2+\sqrt{x}\ge2+0\ge2\)

\(MinA=2\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)

2) \(5-2\sqrt{x-1}\le5\)

\(MinA=5\Leftrightarrow x-1=0\Rightarrow x=1\)