K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

Ta có : A = |x - 2006| + |2007 - x| ≥ |x - 2006 + 2007 - x|

                                                 = |(x - x) - 2006 + 2007| = |1| = 1

Dấu "=" xảy ra khi (x - 2006)(2007 - x) ≥ 0 => 2006 ≤ x ≤ 2007

Vậy gtnn của A là 1 tại 2006 ≤ x ≤ 2007

4 tháng 10 2019

mọi người ơi giúp mình với mình sắp phải nộp rồi

4 tháng 10 2019

ap dung bdt \(|a|+|b|\ge|a+b|\) voi \(a.b\ge0\)

thi \(A\ge|x-2016+2007-x|=|1|=1\)

vay GTNN cua A = 1 . Dat duoc khi \(\left(x-2016\right)\left(2017-x\right)\ge0\)

                                                           <=> \(2016\le x\le2017\)

chuc ban hoc tot

8 tháng 1 2018

1/

l2x+3l=x+2(1)

ta co l2x+3l=\(\hept{\begin{cases}2x+3voix\ge\frac{-3}{2}\\-2x-3voix< \frac{-3}{2}\end{cases}}\)

TH1: neu x>= -3/2 thi (1) <=>2x+3=x+2=>x=-1(chon)

TH2: neu x<= -3/2 thi (1) <=> -2x-3=x+2=>-3x=5=>x=-5/3(chon)

 2/

de A dat gtnn thi lx-2006l va l2007l dat gtnn

ma lx-2006l va l2007-xl >=0

=> gtnn cua lx-2006l=0;l2007-xl=0

=> x=2006 hoac 2007

=> gtnn A=1

8 tháng 1 2018

hihi o may quá

4 tháng 8 2021

       Bài giải

undefined

4 tháng 8 2021

'THAM KHẢO

a,

Điều kiện: x+2≥0⇔x≥−2x+2≥0⇔x≥-2

|2x+3|=x+2|2x+3|=x+2

⇔[2x+3=x+22x+3=−x−2⇔[2x+3=x+22x+3=−x−2

⇔[x=−13x=−5⇔[x=−13x=−5

⇔⎡⎣x=−1(t/m)x=−53(t/m)⇔[x=−1(t/m)x=−53(t/m)

Vậy x∈{−1;−53}x∈{-1;-53}

b,

A=|x−2006|+|2007−x|≥|x−2006+2007−x|=|1|=1A=|x−2006|+|2007−x|≥|x−2006+2007−x|=|1|=1

Đẳng thức xảy ra ⇔(x−2006)(2007−x)≥0⇔(x−2006)(2007−x)≥0

⇔(x−2006)(x−2007)≤0⇔(x−2006)(x−2007)≤0

Vì x−2006>x−2007x−2006>x−2007

⇒{x−2006≥0x−2007≤0⇒{x−2006≥0x−2007≤0

⇔{x≥2006x≤2007⇔{x≥2006x≤2007

⇔2006≤x≤2007⇔2006≤x≤2007

Vậy Amin=1⇔2006≤x≤2007

21 tháng 6 2016

Áp dụng BĐT |a|+|b|>=|a+b| ta có:

\(\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|=1\)

\(\Rightarrow A\ge1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2006\right|=0\\\left|2007-x\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2006\\x=2007\end{cases}}\)

Vậy MinA=1<=>x=2006 hoặc x=2007

22 tháng 11 2015

Ta có: |2007-x|=|x-2007|

 |x-2006|+|x-2007| > |x-2006-(x-2007)|

=> A > 1

=> GTNN cua A la 1

Đẳng thức xảy ra khi (x-2006)(x-2007) > 0

25 tháng 3 2017

+) Nếu x < 2006 thì: A = – x + 2006 + 2007 – x = – 2x + 4013

Khi đó: – x > -2006   => – 2x + 4013 > – 4012 + 4013 = 1   =>   A > 1

+) Nếu 2006  <=   x  <=  2007  thì: A = x – 2006 + 2007 – x = 1

+) Nếu x > 2007 thì   A =   x – 2006 – 2007 + x =   2x – 4013

Do x > 2007   => 2x – 4013 > 4014 – 4013 = 1 => A > 1.

Vậy A đạt giá trị nhỏ nhất là 1 khi 2006 <=  x  <= 2007.

9 tháng 2 2018

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(A\ge\left|x-2016+2017-x\right|=1\)
Vậy minA=1

9 tháng 2 2018

Ta có \(A=\left|x-2006\right|+\left|2007-x\right|\)

\(=\left|2006-x\right|+\left|x-2007\right|\)

Ta có \(A=\left|2006-x\right|+\left|x-2007\right|\ge\left|2006-x+x-2007\right|=1\)

Dấu "=" xảy ra khi và chỉ \(2006\le x\le2007\)

Vậy GTNN A=1 khi \(2006\le x\le2007\)

24 tháng 7 2016

Ta có :

\(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|\)

\(\Rightarrow A\ge1\)

\(\Rightarrow A_{min}=1\)

\(\Leftrightarrow\left(x-2006\right)\left(2007-x\right)\ge0\)

Ta có bảng xét dấu :

x x-2006 ( x - 2006 )( 2007 - x ) 2006 2007 0 0 2007-x 0 _ _ + + + + 0 0 + _ _

\(\Rightarrow2006\le x\le2007\)

20 tháng 3 2017

2005<x<2008