![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: Với x là số cố định => để A có GTNN thì x+3 có giá trị lớn nhất
=> x+3 là số nguyên âm lớn nhất
=>x+3=-1
=>x=-1-3
=>x=-4
Vậy x=-4 thì A có GTNN
\(A=\frac{x+3-3}{x+3}=1-\frac{3}{x+3}.\)( x thuộc Z và x # -3 )
A đạt giá trị nhỏ nhất khi \(\frac{3}{x+3}\)đạt giá trị lớn nhất
Với x thuộc Z và x # -3 ta có : \(\frac{3}{x+3}\le\frac{3}{-2+3}=3\)=> giá trị lớn nhất của \(\frac{3}{x+3}\)= 3 khi x = -2
Vậy GTNN A = 1 - 3 = - 2 Khi x = -2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(x+y+z+\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge2\sqrt{x.\frac{1}{4x}}+2\sqrt{y.\frac{1}{4y}}+2\sqrt{z.\frac{1}{4z}}+\frac{3}{4}\left(\frac{9}{x+y+z}\right)\)
\(\ge1+1+1+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)
Dấu "=" xảy ra <=> x = y = z = 1/2
Vậy min A = 15/2 tại x = y = z = 1/2
Lời giải của em ạ :D
\(A=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\ge x+y+z+\frac{9}{x+y+z}\)
Đặt \(t=x+y+z\le\frac{3}{2}\)
Khi đó \(A=t+\frac{9}{t}=\left(t+\frac{9}{4t}\right)+\frac{27}{4t}\ge3+\frac{27}{4\cdot\frac{3}{2}}=\frac{15}{2}\)
Đẳng thức xảy ra tại x=y=z=1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}=6\)
Mà \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}\ge\frac{36}{x+2y+3z}\Rightarrow6\ge\frac{36}{x+2y+3z}\Rightarrow x+2y+3z\ge6\)
MÀ \(y^2+1\ge2y;z^3+1+1\ge3z\)
=> A+3\(\ge\left(x+2y+3z\right)=6\) => A>=3
dấu = xảy ra <=> x=y=z
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có 1> 0 => để C có GTNN thì 3-2x lớn nhất => 3-2x là số nguyên âm lớn nhất
=> 3-2x=-1 => 2x=4 => x=2. Vậy x=2 thuộc Z khi đó C=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có
x luôn lớn hơn x-1 một đơn vị
mà x khác 1 => x=2;3;4;........
x=2 thì A=2/1=2
x=3 thì A=3/2<2
tương tự với các số khác=> x=2
\(A=\frac{x}{x-1}=\frac{x-1+1}{x-1}=\frac{x-1}{x-1}+\frac{1}{x-1}=1+\frac{1}{x-1}\)
=> để A nhỏ nhất thì 1+ 1/x-1 đạt giá trị nhỏ nhất.
=>1/x-1 nhỏ nhất nên x-1 nhỏ nhất
=>x-1=-1
=>x=0
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:a,
A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc
Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2
b,làm tt câu a
\(A=\frac{x}{x+3}=1-\frac{3}{x+3}\)
Để A đật GTNN <=> \(\frac{3}{x+3}\)đạt GTLN <=> \(x+3\)đạt GTNN <=> \(x=0\)
Với x=0 thì Giá trị Của A là 0
Ta có : \(A=\frac{x}{x+3}=\frac{x+3-3}{x+3}=\frac{x+3}{x+3}-\frac{3}{x+3}\)\(=1-\frac{3}{x+3}\)
=> Để A có GTNN thì \(\frac{3}{x+3}\) có GTLN
Ta có: 3>0 và \(\frac{3}{x+3}\) có GTLN => x+3 nhỏ nhất
=> x+3 là số nguyên dương nhỏ nhất
=> x+3=1 => x=1-3=-2
Vậy x=-2 hì A có GTNN.