Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{\left(1+1+1\right)^2}{3+xy+yz+xz}=\dfrac{9}{3+xy+yz+xz}\)
Mặt khác,theo AM-GM: \(xy+yz+xz\le x^2+y^2+z^2=3\)
\(\Rightarrow\dfrac{9}{3+xy+yz+xz}\ge\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" khi: \(x=y=z=1\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)
\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)
\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=0\Leftrightarrow xy+yz+xz=0\left(đpcm\right)\)
2)
Theo hệ quả của bất đẳng thức Cauchy ta có
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Do \(x^2+y^2+z^2\le3\)
\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)
\(\Rightarrow1\ge xy+yz+xz\)
\(\Rightarrow4\ge xy+yz+xz+3\)
\(\Rightarrow\dfrac{9}{4}\le\dfrac{9}{3+xy+xz+yz}\) ( 1 )
Ta có \(C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{4}\)
Vậy \(C_{min}=\dfrac{9}{4}\)
Dấu " = " xảy ra khi \(x=y=z=\sqrt{\dfrac{1}{3}}\)
Áp dụng BĐT AM - GM ta có :
\(3\ge x^2+y^2+z^2\ge xy+yz+zx\)
Sử dụng BĐT Cauchy schwarz dưới dạng engel ta có :
\(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{\left(1+1+1\right)^2}{1+1+1+xy+yz+zx}=\dfrac{9}{3+xy+yz+zx}\ge\dfrac{9}{3+3}=\dfrac{3}{2}\)
Vậy GTNN của P là \(\dfrac{3}{2}\) . \("="\Leftrightarrow x=y=z=1\)
Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick
Áp dụng BĐT :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ≥ 9
Trong đó : a = xy ; b = yz ; c = xz
⇒ ( xy + yz + xz )\(\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\) ≥ 9 ( * )
Áp dụng BĐT cô - si :
x2 + y2 ≥ 2xy ( x > 0 ; y > 0) ( 1 )
y2 + z2 ≥ 2yz ( y > 0 ; z > 0 ) ( 2)
z2 + x2 ≥ 2xz ( z >0 ; x > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) ⇒ x2 + y2 + z2 ≥ xy + yz + xz ( **)
Từ ( * ; **)
⇒(x2 + y2 + z2).A ≥ ( xy + yz + xz). A ≥ 9
⇒ 3A ≥ 9
⇒ A ≥ 3
⇒ AMIN = 3 ⇔ x = y = z
thanks nha