Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
\(C=4x+\frac{25}{x-1}=\left(4x-4\right)+\frac{25}{x-1}+4=4\left(x-1\right)+\frac{25}{x-1}+4\)
\(\Rightarrow C\ge2\sqrt{4\left(x-1\right).\frac{25}{x-1}}+4=20+4=24\)
Dấu "=" xảy ra khi \(4\left(x-1\right)=\frac{25}{x-1}\Leftrightarrow4\left(x-1\right)^2=25\Leftrightarrow2\left(x-1\right)=5\)( Vì \(x>1\))
\(\Leftrightarrow x=\frac{7}{2}\)
Vậy \(Min_C=24\)
a)
\(A=x^2+xy+y^2-3x-3y+2017\)
\(\Leftrightarrow A=\left(x^2+xy+\frac{y^2}{4}\right)-3x-\frac{3}{2}y+\frac{3y^2}{4}-\frac{3}{2}y+2017\)
\(\Leftrightarrow A=\left(x+\frac{y}{2}\right)^2-2.\left(x+\frac{y}{2}\right).\frac{3}{2}+\frac{9}{4}+\left(\frac{3y^2}{4}-\frac{3}{2}y+\frac{3}{4}\right)-\frac{9}{4}-\frac{3}{4}+2017\)
\(\Leftrightarrow A=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y^2}{4}-\frac{1}{2}y+\frac{1}{4}\right)+2014\)
\(\Leftrightarrow A=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y}{2}-\frac{1}{2}\right)^2+2014\)\(\ge2014\)\(\forall x,y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{y}{2}-\frac{3}{2}=0\\\frac{y}{2}-\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy \(Min_A=2014\)khi \(x=y=1\)
Bài 3:
a) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
b) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)
\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)
Theo BĐT AM-GM:
\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)
Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Bài 1: Thiếu đề.
Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)
Bài 4 a) Sai đề với \(x<0\)
b) Áp dụng BĐT AM-GM:
\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)
Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)
Bài 6: Áp dụng BĐT AM-GM cho $6$ số:
\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=d=1\)
5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y
Ta có:
\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)
Vậy ta suy ra đpcm
b) Ta có: a+b>c;b+c>a;a+c>b
Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
.Tương tự:
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
Vậy ta có đpcm
6) Ta có:
\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)
\(ab+cd=ab+\dfrac{1}{ab}\ge2\)
Suy ra đpcm
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2
1) \(D=\left|x^2+x+3\right|+\left|x^2+x-6\right|\)
\(D=\left|x^2+x+3\right|+\left|6-x^2-x\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :
\(D\ge\left|x^2+x+3+6-x^2-x\right|=\left|9\right|=9\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x^2+x+3\right)\left(6-x^2-x\right)\ge0\Leftrightarrow-3\le x\le2\)
2) \(C=x^2+xy+y^2-3x-3y\)
\(C=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-3\)
\(C=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-3\)
\(C=\left(x-1\right)^2+2\cdot\left(x-1\right)\cdot\frac{\left(y-1\right)}{2}+\frac{\left(y-1\right)^2}{4}+\frac{3\left(y-1\right)^2}{4}-3\)
\(C=\left(x-1-\frac{y-1}{2}\right)^2+\frac{3\left(y-1\right)^2}{4}-3\ge-3\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1-\frac{y-1}{2}=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
3) \(B=x^4-2x^3+3x^2-2x+1\)
\(B=x^2\left(x^2-2x+3-\frac{2}{x}+\frac{1}{x^2}\right)\)
\(B=x^2\left[\left(x^2+2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+1\right]\)
\(B=x^2\left[\left(x+\frac{1}{x}\right)^2-2\left(x+\frac{1}{x}\right)+1\right]\)
\(B=x^2\left(x+\frac{1}{x}-1\right)^2\)
\(B=\left[x\left(x+\frac{1}{x}-1\right)\right]^2\)
\(B=\left(x^2-x+1\right)^2\)
Xét \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow B=\left(x^2-x+1\right)^2\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)