Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= \(\dfrac{x^2-4x+1}{x^2}\)
ĐKXĐ x≠0
A= \(\dfrac{x^2}{x^2}-\dfrac{4x}{x^2}+\dfrac{1}{x^2}\)
=\(1-\dfrac{4}{x}+\dfrac{1}{x^2}\)
đặt \(\dfrac{1}{x}=y\) ta có
1-4y+y2
= y2-4y+1
=(y2-4y+4)-3
= (y-2)2 -3
do (y-2)2 ≥ 0 ∀x
=> (y-2)2 -3 ≥ -3
=> A ≥ -3
=> Amin =-3dấu '=' xảy ra khi
y-2=0
=> y=2
=> \(\dfrac{1}{x}=2\)
=> x=\(\dfrac{1}{2}\)
vậy GTNN A =-3 khi x=\(\dfrac{1}{2}\)
\(\text{a) }\dfrac{x^2+x+1}{x^2+2x+1}\\ =\dfrac{x^2+2x-x+1+1-1}{x^2+2x+1}\\ =\dfrac{\left(x^2+2x+1\right)-\left(x+1\right)+1}{x^2+2x+1}\\ =\dfrac{x^2+2x+1}{x^2+2x+1}-\dfrac{x+1}{\left(x+1\right)^2}+\dfrac{1}{\left(x+1\right)^2}\\ =1-\dfrac{1}{x+1}+\dfrac{1}{\left(x+1\right)^2}\left(1\right)\\ Đặt\text{ }\dfrac{1}{x+1}=y\\ \Rightarrow\left(1\right)=1-y+y^2\\ =y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Do\text{ }\left(y-\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\\ \left(y-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{1}{2}=0\\ \Leftrightarrow y=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{ 1}{x+1}=\dfrac{1}{2}\\ \Leftrightarrow x+1=2\\ \Leftrightarrow x=1\\ Vậy\text{ }GTNN\text{ }của\text{ }phân\text{ }thức\text{ }là\text{ }\dfrac{3}{4}\text{ }khi\text{ }x=1\)
\(\text{b) }\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\\ =\dfrac{4x^2-4x-2x+1+1-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(4x^2-4x+1\right)-\left(2x-1\right)-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(2x-1\right)^2}{\left(2x-1\right)^2}-\dfrac{2x-1}{\left(2x-1\right)^2}-\dfrac{1}{\left(2x-1\right)^2}\\ =1-\dfrac{1}{2x-1}-\dfrac{1}{\left(2x-1\right)^2}\left(1\right)\\ Đặt\text{ }-\dfrac{1}{2x-1}=y\\ \Rightarrow\left(1\right)=1+y+y^2\\ =y^2+y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Do\text{ }\left(y+\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\\ \left(y+\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y+\dfrac{1}{2}=0\\ \Leftrightarrow y=-\dfrac{1}{2}\\ \Leftrightarrow-\dfrac{1}{2x-1}=-\dfrac{1}{2}\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\text{ }GTNN\text{ }của\text{ }biểu\text{ }thức\text{ }là\text{ }\dfrac{3}{4}\text{ }khi\text{ }x=\dfrac{3}{2}\)
\(B=\dfrac{3x^2-2x+3}{x^2+1}=\dfrac{2x^2+x^2-2x+1+2}{x^2+1}\\ =\dfrac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}\\ =\dfrac{2\left(x^2+1\right)}{x^2+1}+\dfrac{x^2-2x+1}{x^2+1}\\ =2+\dfrac{\left(x-1\right)^2}{x^2+1}\)
Do \(\dfrac{\left(x-1\right)^2}{x^2+1}\ge0\forall x\)
\(\Rightarrow B=\dfrac{\left(x-1\right)^2}{x^2+1}+2\ge2\forall x\)
Dấu "=" xảy ra khi :
\(\dfrac{\left(x-1\right)^2}{x^2+1}=0\\ \Leftrightarrow\left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\)
Vậy \(B_{\left(Min\right)}=2\) khi \(x=1\)
\(A=\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}=\dfrac{4x^2-4x-2x+1+1-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(4x^2-4x+1\right)-\left(2x-1\right)-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(2x-1\right)^2}{\left(2x-1\right)^2}-\dfrac{2x-1}{\left(2x-1\right)^2}-\dfrac{1}{\left(2x-1\right)^2}\\ =1-\dfrac{1}{2x-1}-\dfrac{1}{\left(2x-1\right)^2}\)
Đặt \(-\dfrac{1}{2x-1}=y\)
\(\Rightarrow A=1+y+y^2\\ =y^2+y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Do \(\left(y+\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu "=" xảy ra khi:
\(\left(y+\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y+\dfrac{1}{2}=0\\ \Leftrightarrow y=-\dfrac{1}{2}\\ \Leftrightarrow-\dfrac{1}{2x-1}=-\dfrac{1}{2}\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\)
Vậy \(A_{\left(Min\right)}=\dfrac{3}{4}\) khi \(x=\dfrac{3}{2}\)
Lời giải:
a)
\(\frac{x-2}{6x^2-6x}-\frac{1}{4x^2-4}=\frac{x-2}{6x(x-1)}-\frac{1}{4(x^2-1)}=\frac{x-2}{6x(x-1)}-\frac{1}{4(x-1)(x+1)}\)
\(=\frac{2(x+1)(x-2)}{12x(x-1)(x+1)}-\frac{3x}{12x(x-1)(x+1)}=\frac{2(x+1)(x-2)-3x}{12x(x-1)(x+1)}\)
\(=\frac{2x^2-5x-4}{12x(x-1)(x+1)}=\frac{2x^2-5x-4}{12x^3-12x}\)
b) ĐK: \(x\neq \pm 1\)
\(\frac{(x+1)(x^2-2x+1)}{6x^3+6}:\frac{x^2-1}{4x^2-4x+4}\)
\(=\frac{(x+1)(x-1)^2}{6(x^3+1)}.\frac{4x^2-4x+4}{x^2-1}\)
\(=\frac{4(x+1)(x-1)^2(x^2-x+1)}{6(x+1)(x^2-x+1)(x^2-1)}\)
\(=\frac{2(x-1)}{3(x+1)}\)
bt2.
A=[2(4x^2+4x+5)-2]/(4x^2+4x+5)
=2-2/[(4x+1)^2+4]
A>=2-2/4=3/2
khi x=-1/4
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
a.\(\dfrac{5\left(x-3\right)}{4\left(x+1\right)}\) : \(\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x+1\right)^2}\)
= \(\dfrac{5\left(x-3\right)}{4\left(x+1\right)}\). \(\dfrac{\left(x+1\right)^2}{\left(x-3\right)\left(x+3\right)}\)
= \(\dfrac{5\left(x+1\right)}{4\left(x+3\right)}\)
b. \(\dfrac{6\left(x+8\right)}{7\left(x-1\right)}\). \(\dfrac{\left(x-1\right)^2}{\left(x-8\right)\left(x+8\right)}\)
= \(\dfrac{6\left(x-1\right)}{7\left(x-8\right)}\)
c.Tương tự hai câu trên nka!!
d. (\(\dfrac{1}{x\left(x+1\right)}\)-\(\dfrac{2-x}{x+1}\)).(\(\dfrac{x}{x-1}\))
=( \(\dfrac{1}{x\left(x+1\right)}\)-\(\dfrac{2x-x^2}{x\left(x+1\right)}\)). ....
= \(\dfrac{\left(1-x\right)^2}{x\left(x+1\right)}\). ...
= \(\dfrac{x-1}{x+1}\)
a.
\(A=\dfrac{x^2-4x+1}{x^2}\)
\(\Rightarrow A=\dfrac{x^2-4x+4-3}{x^2}\)
\(\Rightarrow A=\dfrac{\left(x-2\right)^2-3}{x^2}\)
Ta có: \(\left(x-2\right)^2-3\ge-3\)
\(\Rightarrow x=2\)
Khi đó ta được Min A = \(\dfrac{\left(2-2\right)-3}{2^2}\ge\dfrac{-3}{4}\)
Vậy Min A = \(\dfrac{-3}{4}\)