K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=-\left(x^2+10x-11\right)\)

\(=-\left(x^2+10x+25-36\right)\)

\(=-\left(x+5\right)^2+36< =36\)

Dấu '=' xảy ra khi x=-5

b: \(=-\left(x^2-6x+5\right)\)

\(=-\left(x^2-6x+9-4\right)\)

\(=-\left(x-3\right)^2+4< =4\)

Dấu '=' xảy ra khi x=3

c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)

Dấu '=' xảy ra khi x=1/2

d: \(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9< =9\)

Dấu '=' xảy ra khi x=-1

3 tháng 12 2018

\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)

\(=\left(x-2\right)^2-3\)    \(\forall x\in Z\)

\(\Rightarrow A_{min}=-3khix=2\)

3 tháng 12 2018

\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)

dấu = xảy ra khi x-2=0

=> x=2

Vậy MinA=-3 khi x=2

\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)

dấu = xảy ra khi x+4=0

=> x=-4

Vậy MaxB=9 khi x=-4

\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

dấu = xảy ra khi \(x-\frac{5}{2}=0\)

=> x=\(\frac{5}{2}\)

Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)

\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)

\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)

dấu = xảy ra khi \(x+\frac{5}{2}=0\)

=> x\(=-\frac{5}{2}\)

vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất 

Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Câu a:
\(A=x^2-4x+1=(x^2-4x+4)-3\)

\(=(x-2)^2-3\geq 0-3=-3\)

Dấu "=" xảy ra khi $(x-2)^2=0$ hay $x=2$

Vậy GTNN của $A$ là $-3$ khi $x=2$

Câu b:

\(B=5-8x-x^2=21-(x^2+8x+16)\)

\(=21-(x+4)^2\leq 21-0=21\)

Dấu "=" xảy ra khi $(x+4)^2=0$ hay $x=-4$

Vậy GTLN của $B$ là $21$ khi $x=-4$

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Câu c:

\(C=5x-x^2=-(x^2-5x)=\frac{25}{4}-(x^2-5x+\frac{5^2}{2^2})\)

\(=\frac{25}{4}-(x-\frac{5}{2})^2\leq \frac{25}{4}-0=\frac{25}{4}\)

Dấu "=" xảy ra khi \((x-\frac{5}{2})^2=0\Leftrightarrow x=\frac{5}{2}\)

Vậy GTLN của $C$ là $\frac{25}{4}$ khi $x=\frac{5}{2}$

Câu d:

\(D=(x-1)(x+3)(x+2)(x+6)=[(x-1)(x+6)][(x+3)(x+2)]\)

\(=(x^2+5x-6)(x^2+5x+6)\)

\(=(x^2+5x)^2-6^2=(x^2+5x)^2-36\geq 0-36=-36\)

Dấu "=" xảy ra khi \((x^2+5x)^2=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=-5\end{matrix}\right.\)

Vậy GTNN của $D$ là $-36$ khi $x=0$ hoặc $x=-5$

30 tháng 7 2018

a) A= -x2 + 6x -10

       = -(x2 - 6x) -10

       =  -(x2 - 2. x .3 +32 -9)- 10

      = -( x-3 )2  +9 -10 

      = - (x-3)2 -1 \(\le\)-1 với mọi giá trị của x

       Dấu '' = '' xảy ra khi và chỉ khi

               x-3 =0

               \(\Leftrightarrow\)x=3

Vậy giá trị lớn nhất của biểu thức A là -1 tại x =3

CÁC PHẦN KHÁC CẬU LÀM TƯƠNG TỰ

b) B= -2x2-4x-10

        = -2(x2+ 2x ) -10

        = -2 (x2 +2x+12 -1)-10

         =-2(x+1)2 +2 -10

        =-2(x+1)2 -8  \(\le\)-8 với mọi giá trị của x

Dấu " ='' xảy ra khi và chỉ khi

        x+1=0

............................

c) C= -2x2 +3x -10

       = -2(x2 -\(\frac{3}{2}\)x) -10

       = -2( x2 - 2.x.\(\frac{3}{4}\)\(\frac{3^2}{4^2}\)-\(\frac{9}{16}\))-10

       = -2(x-\(\frac{3}{4}\))+\(\frac{9}{8}\)-10

        =-2(x- \(\frac{3}{4}\))2 +\(\frac{-71}{8}\)\(\le\)\(\frac{-71}{8}\)với mọi giá trị của x

Dấu  bằng ''='' xảy ra khi và chi khi  

     x-\(\frac{3}{4}\)=0

   .......................................................

d)  D= -x2 -y2+2x-4y -10

          =(-x2+2x) +( -y2 -4y) -10

          = -(x2 -2x+1 -1) -(y2 +4y+22-4 )-10 

          =-(x-1)2 +1  -(y+2)2 +4 -10

           =-(x-1)2 - (y+2)2 -5   \(\le\)5  với mọi giá tri của x

Dấu '' ='' xảy ra khi và chỉ khi  

\(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\)

......................................................

e) XIN LỖI TỚ CHƯA NGHĨ RA

                          

       

23 tháng 6 2019

a) Ta có:A = 6x2 - 6x + 1 = 6(x2 - x + 1/4) - 1/2 = 6(x - 1/2)2 - 1/2

Ta luôn có : (x - 1/2)2 \(\ge\)\(\forall\)x  --> 6(x  - 1/2)2 \(\ge\) 0 \(\)x

=> 6(x - 1/2)2 - 1/2 \(\ge\)-1/2 \(\forall\)x

hay A \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra khi : (x - 1/2)2 = 0 <=> x - 1/2 = 0 <=> x = 1/2

Vậy Amin = -1/2 tại x = 1/2

23 tháng 6 2019

\(a,A=6x^2-6x+1\)

\(=6\left(x^2-x+\frac{1}{6}\right)\)

\(=6\left[\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+\frac{1}{6}\right]\)

\(=6\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{12}\right]\)

\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\)

\(A_{min}=-\frac{1}{12}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

23 tháng 6 2019

\(a,A=6x^2-6x+1\)

\(=6\left(x^2-x+\frac{1}{4}\right)-\frac{1}{2}\)

\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu = xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Min_A=-\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)

\(b,B=3+2x+3x^2\)

\(=3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{8}{3}\)

\(=3\left(x+\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)

Dấu = xảy ra \(\Leftrightarrow x=-\frac{1}{3}\)

Vậy \(Min_B=\frac{8}{3}\Leftrightarrow x=-\frac{1}{3}\)

\(c,C=4x+2x^2-3\)

\(=2\left(x^2+2x+1\right)-5\)

\(=2\left(x+1\right)^2-5\ge-5\)

Dấu = xảy ra \(\Leftrightarrow x=-1\)

Vậy \(Min_C=-5\Leftrightarrow x=-1\)

\(d,D=10x+6+x^2\)

\(=\left(x^2+10x+25\right)-19\)

\(=\left(x+5\right)^2-19\ge-19\)

Dấu = xảy ra \(\Leftrightarrow x=-5\)

Vậy \(Min_D=-19\Leftrightarrow x=-5\)

\(e,E=8x^2-6x+3\)

\(=8\left(x^2-\frac{3}{4}x+\frac{9}{64}\right)+\frac{15}{8}\)

\(=8\left(x-\frac{3}{8}\right)^2+\frac{15}{8}\ge\frac{15}{8}\)

Dấu = xảy ra \(\Leftrightarrow x=\frac{3}{8}\)

Vậy \(Min_E=\frac{15}{8}\Leftrightarrow x=\frac{3}{8}\)

NV
13 tháng 4 2020

Hai câu là hoàn toàn giống nhau, mình làm câu a, câu b bạn tự làm tương tự:

ĐKXĐ: ...

Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:

\(\frac{4}{4x+\frac{7}{x}-8}+\frac{3}{4x+\frac{7}{x}-10}=1\)

Đặt \(4x+\frac{7}{x}-10=t\)

\(\Leftrightarrow\frac{4}{t+2}+\frac{3}{t}=1\Leftrightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)

\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x+\frac{7}{x}-10=-1\\4x+\frac{7}{x}-10=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x^2-9x+7=0\\4x^2-16x+7=0\end{matrix}\right.\) (bấm casio)

13 tháng 4 2020

cảm ơn

2 tháng 1 2018

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

3 tháng 1 2018

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2