![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi x = 1
b) \(B=x^2-4x+y^2-8y+6\)
\(B=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(B=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Vậy GTNN của B là -14 khi x = 2; y = 4
a, A = x2 - 2x + 2
=(x2 -2x + 1) +1
=(x-1)2 + 1 >= 1
Dấu bằng xảy ra <=> (x-1)2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy...
b, B = x2 - 4x + y2- 8y + 6
B =(x2 - 4x + 4) + (y2- 8y + 16) - 14
B =(x - 2)2 + (y - 4)2 -14 >= -14
Dấu bằng xảy ra + <=> x - 2 = 0
<=> x = 2
+ <=> y - 4 = 0
<=> y = 4
Vậy ...
Bài này dài vc sao làm hết dc.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có:A = 6x2 - 6x + 1 = 6(x2 - x + 1/4) - 1/2 = 6(x - 1/2)2 - 1/2
Ta luôn có : (x - 1/2)2 \(\ge\)0 \(\forall\)x --> 6(x - 1/2)2 \(\ge\) 0 \(\)x
=> 6(x - 1/2)2 - 1/2 \(\ge\)-1/2 \(\forall\)x
hay A \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra khi : (x - 1/2)2 = 0 <=> x - 1/2 = 0 <=> x = 1/2
Vậy Amin = -1/2 tại x = 1/2
\(a,A=6x^2-6x+1\)
\(=6\left(x^2-x+\frac{1}{6}\right)\)
\(=6\left[\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+\frac{1}{6}\right]\)
\(=6\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{12}\right]\)
\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\)
\(A_{min}=-\frac{1}{12}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{a) }A=x^2-10x+25\\ A=x^2-2\cdot x\cdot5+5^2\\ A=\left(x-5\right)^2\\ Do\text{ }\left(x-5\right)^2\ge0\forall x\\ \Leftrightarrow A\ge0\forall x\\ \text{Dấu "=" xảy ra khi : }\\ \left(x-5\right)^2=0\\ \Leftrightarrow x-5=0\\ \Leftrightarrow x=5\\ \text{Vậy }A_{\left(Min\right)}=0\text{ }khi\text{ }x=5\)
\(\text{b) }B=x^2+y^2-x+6y+10\\ B=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\\ B=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\\ Do\text{ }\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\ \left(y+3\right)^2\ge0\forall y\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\forall x;y\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x;y\\ \text{Dấu "=" xảy ra khi: }\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\\\left(y+3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\\ \text{ Vậy }B_{\left(Min\right)}=\dfrac{3}{4}\text{ }khi\text{ }x=\dfrac{1}{2};y=-3\)
\(\text{c) }C=2x^2-6x+10\\ C=\left(2x^2-6x+\dfrac{9}{2}\right)+\dfrac{11}{2}\\ C=2\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{2}\\ C=2\left[x^2-2\cdot x\cdot\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{11}{2}\\ C=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{2}\\ Do\text{ }\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow2\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow2\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{2}\ge\dfrac{11}{2}\\ \text{Dấu "=" xảy ra khi: }\\ \left(x-\dfrac{3}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{3}{2}=0\\ \Leftrightarrow x=\dfrac{3}{2}\\ \text{Vậy }C_{\left(Min\right)}=\dfrac{11}{2}khi\text{ }x=\dfrac{3}{2}\)
\(\)
b)
\(B=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\left(10-9-\dfrac{1}{4}\right)\)\(B=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=-\left(x^2+10x-11\right)\)
\(=-\left(x^2+10x+25-36\right)\)
\(=-\left(x+5\right)^2+36< =36\)
Dấu '=' xảy ra khi x=-5
b: \(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-6x+9-4\right)\)
\(=-\left(x-3\right)^2+4< =4\)
Dấu '=' xảy ra khi x=3
c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)
Dấu '=' xảy ra khi x=1/2
d: \(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9< =9\)
Dấu '=' xảy ra khi x=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\left(x-3\right)^2+\left(x-11\right)^2\ge0\)
\(MinB=0\Leftrightarrow\hept{\begin{cases}x-3=0\\x-11=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\x=11\end{cases}}\)
C = (x + 1).(x - 2).(x - 3).(x - 6)
= [(x + 1)(x - 6)][(x - 2)(x - 3)]
= (x2 - 5x - 6)(x2 - 5x + 6)
Đặt x2 - 5x = t, ta có:
C = (t - 6)(t + 6) = t2 - 36
Vì t2 lớn hơn hoặc bằng 0 => t2 - 36 lớn hơn hoặc bằng -36
Dấu "=" xảy ra khi t2 = 0 => t = 0 => x2 - 5x = 0 => x(x - 5) = 0 => x = 0 hoặc x = 5
Vậy Min C = -36 tại x = 0 hoặc 5
![](https://rs.olm.vn/images/avt/0.png?1311)
C=[(x+1)(x-6)][(x-2)(x-3)]
=(x2-5x-6)(x2-5x+6)
=(x2-5x)2-36>=-36
GTNN cua C=-36 tai x2-5x=0=>x(x-5)=0=>x=0 hoac x=5
B=(x-3)2+(x-11)2
=x2-6x+9+x2-22x+121
=2x2-28x+130
=2(x2-14x+65)
=2(x2-2.7x+72-72+65)
=2[(x-7)2-49+65]
=2(x-7)2+32
=> vì 2(x-7)2 >= 0
=>2(x-7)2+32 >= 32
=> GTNN của B=32. Khi x=7
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,A=6x^2-6x+1\)
\(=6\left(x^2-x+\frac{1}{4}\right)-\frac{1}{2}\)
\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)
Dấu = xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Min_A=-\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)
\(b,B=3+2x+3x^2\)
\(=3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{8}{3}\)
\(=3\left(x+\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)
Dấu = xảy ra \(\Leftrightarrow x=-\frac{1}{3}\)
Vậy \(Min_B=\frac{8}{3}\Leftrightarrow x=-\frac{1}{3}\)
\(c,C=4x+2x^2-3\)
\(=2\left(x^2+2x+1\right)-5\)
\(=2\left(x+1\right)^2-5\ge-5\)
Dấu = xảy ra \(\Leftrightarrow x=-1\)
Vậy \(Min_C=-5\Leftrightarrow x=-1\)
\(d,D=10x+6+x^2\)
\(=\left(x^2+10x+25\right)-19\)
\(=\left(x+5\right)^2-19\ge-19\)
Dấu = xảy ra \(\Leftrightarrow x=-5\)
Vậy \(Min_D=-19\Leftrightarrow x=-5\)
\(e,E=8x^2-6x+3\)
\(=8\left(x^2-\frac{3}{4}x+\frac{9}{64}\right)+\frac{15}{8}\)
\(=8\left(x-\frac{3}{8}\right)^2+\frac{15}{8}\ge\frac{15}{8}\)
Dấu = xảy ra \(\Leftrightarrow x=\frac{3}{8}\)
Vậy \(Min_E=\frac{15}{8}\Leftrightarrow x=\frac{3}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1, \(25x^2-10xy+y^2=\left(5x-y\right)^2\)
2, \(8x^3+36x^2y+54xy^2+27y^3=\left(2x+3y\right)^3\)
4, \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
5, \(2x^3+3x^2+2x+3\)
\(=x^2\left(2x+3\right)+2x+3\)
\(=\left(x^2+1\right)\left(2x+3\right)\)
6, \(x^3z+x^2yz-x^2z^2-xyz^2\)
\(=x^3z-x^2z^2+x^2yz-xy^2\)
\(=xz\left(x^2-xz\right)+xz\left(xy-yz\right)\)
\(=xz\left[x\left(x-z\right)+y\left(x-z\right)\right]\)
\(=xz\left(x+y\right)\left(x-z\right)\)
8, \(x^3+3x^2y+3xy^2+y+y^3\)\(=\left(x+y\right)^3+y\)
9, \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
10, \(x^2-8x+12\)
\(=x^2-6x-2x+12\)
\(=x\left(x-6\right)-2\left(x-6\right)\)
\(=\left(x-2\right)\left(x-6\right)\)
Chỗ còn lại mai làm nốt nha.
Gặp chút sự cố đăng nhập nên hơi muộn, xin lỗi nha
11, \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)
\(=a^2b-ab^2+abc-a^2c+b^2c-abc+ac^2-c^2b\)
\(=ab\left(a-b\right)-ac\left(a-b\right)-bc\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)
\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
12, \(x^3-7x-6\)
\(=x^3-3x^2+3x^2-9x+2x-6\)
\(=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)
13, \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
14, \(a^4+64\)
\(=a^4+16a^2+64-16a^2\)
\(=\left(a^2+8\right)^2-16a^2\)
\(=\left(a^2-4a+8\right)\left(a^2+4a+8\right)\)
15, \(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)
16, \(x^5+x-1\)
\(=x^5-x^4+x^3+x^4-x^3+x^2-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x^2-1\right)\)
17, \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-15\)
19, \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) (*)
Đặt \(x^2+8x+7=a\) ta có:
(*) \(\Leftrightarrow a\left(a+8\right)+15\)
\(\Leftrightarrow a^2+8a+15\)
\(\Leftrightarrow a^2+3a+5a+15\)
\(\Leftrightarrow a\left(a+3\right)+5\left(a+3\right)\)
\(\Leftrightarrow\left(a+3\right)\left(a+5\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
20, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\) (*)
Đặt \(x^2+3x+1=a\) ta có:
(*) \(\Leftrightarrow a\left(a+1\right)-6\)
\(\Leftrightarrow a^2+a-6\)
\(\Leftrightarrow a^2+3a-2a-6\)
\(\Leftrightarrow a\left(a+3\right)-2\left(a+3\right)\)
\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+3x-1\right)\left(x^2+3x+5\right)\)
a) A=25x^2+3y^2-10x+11=25x^2-10x+1+3y^2+10=(5x+1)^2+3y^2+10
Vì (5x+1)^2>=0 với mọi giá trị của x
3y^2>=0 với mọi giá trị của y
Nên: (5x+1)^2+3y^2+10>=10(dấu "=" xảy ra khi và chỉ khi x=-1/5 và y=0)
b)(x+1)(x-1)(x-3)(x-6)=[(x+1)(x-6)][(x-2)(x-3)]=(x^2-5x-6)(x^2-5x+6)=(x^2-5x-6)^2+12(x^2-5x-6)+36-36=(x^2-5x-6+6)^2-36=(x^2-5x)^2-36
Vì (x^2-5x)^2>=0 nên MinB=-36
k cho mik nha!