\(\dfrac{2}{x}\) \(\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang

NV
5 tháng 6 2019

ĐKXĐ:...

\(M=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)

\(N=\frac{x\sqrt{x}-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}=\frac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\sqrt{x}+2}=x-1\)

Để \(M=N\Leftrightarrow x-1=2\sqrt{x}+1\)

\(\Leftrightarrow x-2\sqrt{x}-2=0\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{3}+1\\\sqrt{x}=1-\sqrt{3}< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\left(\sqrt{3}+1\right)^2=4+2\sqrt{3}\)

Bài 1: Giải các phương trình, hệ phương trình sau: a) \((3x+1)(4x+1)(6x+1)(12x+1)=2\) b) \(\begin{cases} x(x+\dfrac{4}{y})+\dfrac{1}{y^2}=2 \\ x(2+\dfrac{1}{y})+\dfrac{2}{y}=3 \end{cases}\) c) \((x^2-9)\sqrt{2-x}=x(x^2-9)\) d) \(\begin{cases} (x^2+4y^2)^2-4(x^2+4y^2)=5\\ 3x^2+2y^2=5 \end{cases}\) e) \(\sqrt{2x-1}+\sqrt{1-2x^2}=2 \sqrt{x-x^2}\) f) \(\dfrac{9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}-1=0\) Bài 2: a) Tìm nghiệm nguyên của phương trình:...
Đọc tiếp

Bài 1: Giải các phương trình, hệ phương trình sau:

a) \((3x+1)(4x+1)(6x+1)(12x+1)=2\)

b) \(\begin{cases} x(x+\dfrac{4}{y})+\dfrac{1}{y^2}=2 \\ x(2+\dfrac{1}{y})+\dfrac{2}{y}=3 \end{cases}\)

c) \((x^2-9)\sqrt{2-x}=x(x^2-9)\)

d) \(\begin{cases} (x^2+4y^2)^2-4(x^2+4y^2)=5\\ 3x^2+2y^2=5 \end{cases}\)

e) \(\sqrt{2x-1}+\sqrt{1-2x^2}=2 \sqrt{x-x^2}\)

f) \(\dfrac{9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}-1=0\)

Bài 2: a) Tìm nghiệm nguyên của phương trình: \(3x^2-2y^2-5xy+x-2y-7=0\)

b) Cho các số thực a, b thỏa mãn căn bậc \(\sqrt[3]{a}+\sqrt[3]{b} =\sqrt[3]{b-\dfrac{1}{4}}\). CMR: \(-1< a <0\)

c) Tìm số nguyên a, b, c thỏa: \(a+b+c=0\), \(ab+bc+ca=3\)

d) Với k là số nguyên dương, chứng minh rằng không tồn tại các số nguyên a,b,c khác 0 sao cho \(a+b+c=0\), \(ab+bc+ca+2^k=0 \)

Bài 3: Cho tứ giác ABCD nội tiếp đường tròn tâm O. Đường thẳng vuông góc với AD tại A cắt BC tại E. Đường thẳng vuông góc với AB tại A cắt CD tại F. Chứng minh: O, E, F thẳng hàng.

Bài 4: Cho hình thang ABCD vuông tại A và B, M là trung điểm AB. Đường thẳng qua A vuông góc với MD cắt đường thẳng qua B vuông góc với MC tại N. Chứng minh rằng: MN vuông góc CD.

12
5 tháng 6 2018

Câu 1a thì được nè :v

( 3x + 1)( 4x + 1)( 6x + 1)( 12x + 1) = 2

⇔ 4( 3x + 1)3( 4x + 1)2( 6x + 1)( 12x + 1) = 2.4.3.2

⇔ ( 12x + 4)( 12x + 3)( 12x + 2)( 12x + 1) =48 ( 1)

Đặt : 12x + 1 = a , ta có :

( 1) ⇔ a( a+ 1)( a + 2)( a + 3) = 48

⇔ ( a2 + 3a)( a2 + 3a +2) = 48

Đặt : a3 + 3a = t , ta có :

t( t +2) =48

⇔ t2 + 2t - 48 = 0

⇔ t2 - 6t + 8t - 48 = 0

⇔ t( t - 6) + 8( t - 6) = 0

⇔ ( t - 6)( t + 8) = 0

⇔ t = 6 hoặc t = -8

Tự thế vào mà tìm a sau đó suy ra x nha

AH
Akai Haruma
Giáo viên
6 tháng 6 2018

Bài 1:

b)

HPT \(\left\{\begin{matrix} x^2+\frac{1}{y^2}+\frac{4x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \left(x+\frac{1}{y}\right)^2+\frac{2x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)

Lấy PT(1) trừ 2PT(2) thu được:

\(\left(x+\frac{1}{y}\right)^2-4\left(x+\frac{1}{y}\right)=-4\)

\(\Leftrightarrow \left(x+\frac{1}{y}-2\right)^2=0\Rightarrow x+\frac{1}{y}=2\)

Thay vào thu được \(\frac{x}{y}=-1\)

Theo định lý Viete đảo thì \((x,\frac{1}{y})\) là nghiệm của PT:

\(X^2-2X-1=0\)

\(\Rightarrow (x,\frac{1}{y})=(1+\sqrt{2}; 1-\sqrt{2})\) hoặc \((1-\sqrt{2}; 1+\sqrt{2})\)

Tức là: \((x,y)=(1+\sqrt{2}, -1-\sqrt{2}); (1-\sqrt{2}; -1+\sqrt{2})\)

NV
16 tháng 9 2019

\(A=\frac{3x}{4}+\frac{x}{4}+\frac{1}{x}\ge\frac{3x}{4}+2\sqrt{\frac{x}{4x}}\ge\frac{3.2}{4}+1=\frac{5}{2}\)

\(A_{min}=\frac{5}{2}\) khi \(x=2\)

\(B=\frac{24x}{25}+\frac{x}{25}+\frac{1}{x}\ge\frac{24x}{25}+2\sqrt{\frac{x}{25x}}\ge\frac{24.5}{25}+\frac{2}{5}=\frac{26}{5}\)

\(B_{min}=\frac{26}{5}\) khi \(x=5\)

Câu C bạn coi lại đề, nếu đúng thế này thì ko tồn tại min

b: \(=\dfrac{\left|x\right|+\left|x-2\right|+1}{2x-1}=\dfrac{x+x-2+1}{2x-1}=\dfrac{2x-1}{2x-1}=1\)

c: \(=\left|x-4\right|+\left|x-6\right|\)

=x-4+6-x=2

25 tháng 6 2018

a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)

đk: x >/ 0

(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)

Kl: \(x=\dfrac{392}{169}\)

b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)

đk: x >/ 5

(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)

Kl: x=9

c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)

Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)

(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)

Kl: x=-6

d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)

Đk: \(x\ge\dfrac{4}{5}\)

(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)

Kl: x=12

NV
5 tháng 6 2019

ĐKXĐ:...

\(A=\left(\frac{\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a}+1}\right).\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}.\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}=\frac{1}{a}\)

\(C=\left(\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(=\left(\frac{\left(\sqrt{x}+1\right)}{-\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)}.\frac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)}\)

\(=\left(-1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\sqrt{x}=\left(\frac{-x-\sqrt{x}-1+x+\sqrt{x}}{x+\sqrt{x}+1}\right)\sqrt{x}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}\)