Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Ta có A = x2 + 7x + 1
= \(x^2+2.\frac{7}{2}x+\frac{49}{4}-\frac{49}{4}+1\)
= \(\left(x+\frac{7}{2}\right)^2-\frac{45}{4}\ge-\frac{45}{4}\)
Dấu "=" xảy ra <=> \(x+\frac{7}{2}=0\Rightarrow x=-\frac{7}{2}\)
Vậy Min A = -45/4 <=> x = -7/2
A = x2 + 7x + 1
= ( x2 + 7x + 49/4 ) - 45/4
= ( x + 7/2 )2 - 45/4 ≥ -45/4 ∀ x
Dấu "=" xảy ra <=> x + 7/2 = 0 => x = -7/2
=> MinA = -45/4 <=> x = -7/2
\(A=x^2-6x=x^2-6x+9-9=\left(x-3\right)^2-9\Rightarrow minA=-9\)
\(B=2x^2+7x-2=2\left(x^2+2\cdot\frac{7}{4}x+\frac{49}{16}\right)-\frac{65}{8}=2\left(x+\frac{7}{4}\right)^2-\frac{65}{8}\Rightarrow minB=-\frac{65}{8}\)
\(C=3x^2-6x-1=3\left(x^2-2x+1\right)-4=3\left(x-1\right)^2-4\Rightarrow minC=-4\)
\(D=x^2+x-1=\left(x^2+2x\cdot\frac{1}{2}+\frac{1}{4}\right)-\frac{5}{4}=\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\Rightarrow minD=-\frac{5}{4}\)
\(1,x^2+4x-2=\left(x+2\right)^2-6\ge6\)
Dấu \("="\Leftrightarrow x=-2\)
\(2.x^2+7x+1=\left(x+\dfrac{7}{2}\right)^2-\dfrac{45}{4}\ge-\dfrac{45}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{7}{2}\)
\(3,25x^2+30x+11=\left(5x+3\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{5}\)
\(A=9x^2-6x+2=\left(9x^2-6x+1\right)+1\)
\(=\left(3x-1\right)^2+1\)
Với mọi giá trị của x , ta có:
\(\left(3x-1\right)^2\ge1\Rightarrow\left(3x-1\right)^2+1\ge1\)
Vậy \(Min_A=1\)
Để A = 1 thì \(3x-1=0\Rightarrow3x=1\Rightarrow x=\frac{1}{3}\)
\(B=x^2-7x+11=\left(x^2-7x+\frac{49}{4}\right)-\frac{5}{4}\)
\(=\left(x-\frac{7}{2}\right)^2-\frac{5}{4}\)
Với moị giá trị của x , ta có:
\(\left(x-\frac{7}{2}\right)^2\ge0\Rightarrow\left(x-\frac{7}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Vậy \(Min_B=-\frac{5}{4}\)
Để B = \(-\frac{5}{4}\) thì \(x-\frac{7}{2}=0\Rightarrow x=\frac{7}{2}\)
\(C=x^2+x+5=\left(x^2+x+\frac{1}{4}\right)+\frac{19}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\)
Với mọi giá trị của x thì :
\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)
Vậy : \(Min_C=\frac{19}{4}\)
Để \(C=\frac{19}{4}\) thì \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
\(D=\left(x-1\right)\left(x+2\right)+1=x^2+x-2+1\)
\(=x^2+x-1=\left(x^2+x+\frac{1}{4}\right)-\frac{5}{4}\)
\(=\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\)
Với mọi giá trị của x . ta có:
\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Vậy \(Min_D=-\frac{5}{4}\)
Để \(D=-\frac{5}{4}\) thì \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
\(7x^2-x+1=7\left(x^2-\dfrac{x}{7}+\dfrac{1}{196}\right)+\dfrac{27}{28}\)
\(=7\left(x-\dfrac{1}{14}\right)^2+\dfrac{27}{28}\ge\dfrac{27}{28}\forall x\)
\(Min=\dfrac{27}{28}\Leftrightarrow x=\dfrac{1}{14}\)
A= 7x2 - x + 1
A= 7( x2 - 2.1/14x + 1/196) + 27/28
A= 7(x - 1/14)2 + 27/28
A = 7(x - 1/14)2 ≥ 0 ⇔ 7(x-1/14)2 +27/28 ≥ 27/28
A(min)= 27/28 ⇔ x = 1/14