K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2023

\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)

vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)

\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)

Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)

30 tháng 8 2023

\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)

vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)

\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi

\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)

\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)

18 tháng 7 2018

a, Vì (2x+1/2)4>= 0

=> (2x+1/2)4-1>= -1

=> Min A =-1 <=> x = -1/4

b, vì -(4/9x-2/15)6<= 0

=> 3-(4/9x-2/15)6<= 3

=> Max B = 3 <=> x=3/10

29 tháng 12 2019

\(\left|2x-6\right|=\hept{\begin{cases}2x-6\left(khi2x-6\ge0\right)\\6-2x\left(khi2x-6< 0\right)\end{cases}}\)

\(\left|2x-6\right|=\hept{\begin{cases}2x-6khix\ge3\\6-2xkhix< 3\end{cases}}\)

\(\left|2x-2\right|=\hept{\begin{cases}2x-2khi2x-2\ge0\\2-2xkhi2x-2< 0\end{cases}}\)

\(\left|2x-2\right|=\hept{\begin{cases}2x-2khix\ge1\\2-2xkhix< 1\end{cases}}\)

KHI \(x< 1\):

\(6-2x+2-2x=6\)

\(\Rightarrow-4x+8=6\)

\(\Rightarrow4x=2\Rightarrow x=\frac{1}{2}\)(THỎA MÃN)

KHI \(1\le x< 3\)

\(6-2x+2x-2=6\)

\(\Rightarrow4=6\)9VÔ NGHIỆM)

KHI: \(x\ge3\)

\(\Rightarrow2x-6+2x-2=6\)

\(\Rightarrow4x=14\Rightarrow x=\frac{7}{2}\)(THỎA MÃN)

18 tháng 10 2019

a) Ta có: 3|x - 14| \(\ge\)\(\forall\)x

=> 3|x - 14| + 4 \(\ge\)\(\forall\)x

=> \(\frac{6}{3\left|x-14\right|+4}\le\frac{3}{2}\forall x\)

Dấu "=" xảy ra <=> x - 14 = 0 <=> x = 14

Vậy MaxA = 3/2 <=> x = 14

8 tháng 11 2020

b) Mình có: |2x + 6| = \(\orbr{\begin{cases}2x+6\\-2x-6\end{cases}}\)\(\Rightarrow\)BMin = - 2x- 6  + 2 + 2x = -4 khi x \(\le\)-3

13 tháng 7 2020

A = x2 + 2y2 + 2xy - 2x - 6y + 6

A = (x2 + 2xy + y2) - 2(x + y) + 1 + (y2 - 4y + 4) + 1

A = (x + y - 1)2 + (y - 2)2 + 1 \(\ge\)\(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1-y\\y=2\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy MinA = 1 khi x = -1 và y = 2

2 tháng 2 2017

Giúp mình với nhé

2 tháng 2 2017

Ta có :

|x - 2| + |2x + 3| ≥ |x - 2 + 2x + 3| = |3x + 1|

=> A ≥ |3x + 1| + |3x - 4| = |3x + 1| + |4 - 3x|

A ≥ |3x + 1 + 4 - 3x| = 5

Dấu "=" xảy ra khi (3x + 1)(4 - 3x) ≥ 0 <=> - 1/3 ≤ x ≤ 4/3

Vậy GTNN của A là 5 <=> - 1/3 ≤ x ≤ 4/3