Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo lời giải ở đây nhé: https://h.vn/hoi-dap/question/461324.html
1, \(C=-500-\left|2x-10\right|\)
Có \(\left|2x-10\right|\ge0\)
\(\Rightarrow C\le-500-0=-500\)
Dấu "=" xảy ra khi \(MaxC=-500\Leftrightarrow x=5\)
2,\(D=-600+\left|3x+15\right|\)
Có \(\left|3x+15\right|\ge0\)
\(\Rightarrow D\ge-600+0=-600\)
Dấu "=" xảy ra khi \(MinD=-600\Leftrightarrow x=-15\)
3x-8.(-6)=4x+10
=> 3x - (-48 ) = 4x+10
=> 3x + 48 = 4x + 10
=> 48 - 10 = 4x - 3x
=> 38 = x
Vậy x = 38
\(3x-8.\left(-6\right)=4x+10\)
\(3x+48=4x+10\)
\(4x-3x=48-10\)
\(x=38\)
a) Ta có: \(\left|x+5\right|\ge0\forall x\)
\(\Rightarrow\left|x+5\right|+2023\ge2023\forall x\)
\(\Rightarrow A\ge2023\forall x\)
Dấu \("="\) xảy ra khi: \(x+5=0\Leftrightarrow x=-5\)
Vậy \(Min_A=2023\) khi \(x=-5\).
b) Ta có: \(\left\{{}\begin{matrix}\left|2x+6\right|\ge0\forall x\\\left|y+3x\right|\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left|2x+6\right|+\left|y+3x\right|\ge0\forall x,y\)
\(\Rightarrow\left|2x+6\right|+\left|y+3x\right|+25\ge25\forall x,y\)
\(\Rightarrow B\ge25\forall x,y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}2x+6=0\\y+3x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-6\\y=-3x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-6:2=-3\\y=-3\cdot\left(-3\right)=9\end{matrix}\right.\)
Vậy \(Min_B=25\) khi \(x=-3;y=9\).
c) Ta có: \(\left\{{}\begin{matrix}\left|12-3x\right|\ge0\forall x\\\left|-y-4x\right|\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left|12-3x\right|+\left|-y-4x\right|\ge0\forall x,y\)
\(\Rightarrow\left|12-3x\right|+\left|-y-4x\right|-12\ge-12\forall x,y\)
\(\Rightarrow C\ge-12\forall x,y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}12-3x=0\\-y-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=12\\y=-4x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=12:3=4\\y=-4\cdot4=-16\end{matrix}\right.\)
Vậy \(Min_C=-12\) khi \(x=4;y=-16\).
\(\mathit{Toru}\)
C = 3 I x-2 I + I3x+1I
= I3x-6I + I-3x-1I \(\ge\)I 3x-6-3x-1I=7
=>Min C=7.
Tương tự với D