Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)\)
\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)
\(=\left(x^2-7x\right)^2-100\ge-100\)
Dấu " = " khi \(x^2-7x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
Vậy \(MIN_A=-100\) khi x = 0 hoặc x = 7
a: Ta có: \(\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)
\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)
\(=8\left(7x+4\right)\)
=56x+32
b: Ta có: \(8\left(x-2\right)^2-3\left(x^2-4x-5\right)-5x^2\)
\(=8x^2-32x+32-3x^2+12x+15-5x^2\)
\(=-20x+47\)
c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)
\(=x^3+3x^2+3x+1-x^3+1-3x^2-3x\)
=2
1, \(A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(A=5x^3-15x+7x^2-5x^3-7x^2\)
\(A=\left(5x^3-5x^3\right)+\left(7x^2-7x^2\right)-15x\)
\(A=-15x\)
Thay \(x=-5\) vào A ta được:
\(-15\cdot-5=75\)
Vậy: ....
2. \(B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(B=x^3-3x+7x^2-5x^3-7x^2\)
\(B=\left(x^3-5x^3\right)+\left(7x^2-7x^2\right)-3x\)
\(B=-4x^3-3x\)
Thay \(x=10,y=-1\) vào B ta được:
\(-4\cdot10^3-3\cdot10=-4\cdot1000-3\cdot10=-4000-30=-4030\)
Vậy: ....
1) \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
<=> \(\frac{21x}{24}-\frac{100\left(x-9\right)}{24}=\frac{80x+6}{24}\)
<=> 21x - 100x + 900 = 80x + 6
<=> -79x - 80x = 6 - 900
<=> -159x = -894
<=> x = 258/53
Vậy S = {258/53}
2) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
<=> \(\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2+2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)
<=> 12x2 + 12x + 3 - 5x2 - 10x - 5 = 7x2 - 14x - 5
<=> 7x2 + 2x - 7x2 + 14x = -5 + 2
<=> 16x = 3
<=> x = 3/16
Vậy S = {3/16}
3) 4(3x - 2) - 3(x - 4) = 7x+ 10
<=> 12x - 8 - 3x + 12 = 7x + 10
<=> 9x - 7x = 10 - 4
<=> 2x = 6
<=> x = 3
Vậy S = {3}
4) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
<=> \(\frac{x^2+14x+40}{12}+\frac{3\left(x^2+2x-8\right)}{12}=\frac{4\left(x^2+8x-20\right)}{12}\)
<=> x2 + 14x + 40 + 3x2 + 6x - 24 = 4x2 + 32x - 80
<=> 4x2 + 20x - 4x2 - 32x = -80 - 16
<=> -12x = -96
<=> x = 8
Vậy S = {8}
a: \(=49x^2-64-10\left(4x^2+12x+9\right)+5x\left(9x^2-12x+4\right)+4x\left(x^2-10x+25\right)\)
\(=49x^2-64-40x^2-120x-90+45x^3-60x^2+20x+4x^3-40x^2+100x\)
\(=49x^3-91x^2-154\)
b: \(=27x^3+189x^2+441x+343-125x^3+y^3+x^3+6x^2y+12xy^2+8y^3\)
\(=-97x^3+189x^2+441x+6x^2y+12xy^2+9y^3+343\)
\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{9x}{x^2-7x+10}=10\)
\(\Leftrightarrow\frac{3x^2-15x-x^2+2x+9x}{\left(x-2\right)\left(x-5\right)}=10\)
\(\Leftrightarrow2x^2-4x=10x^2-70x+100\)
\(\Leftrightarrow8x^2-66+100=0\)
\(\Leftrightarrow4x^2-33x+50=0\)
\(\Leftrightarrow4x\left(x-2\right)-25\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x-25\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{25}{4}\end{matrix}\right.\)
b) [(x-7)(x-2)][(x-4)(x-5)]=72
<=> (x2-9x+14)(x2-9x+20)=72
Đặt x2-9x+17=a
=> (a+3)(a-3)=72
<=> a2-9=72
<=> a2=81
=> a=\(\left\{9;-9\right\}\)
TH1: a=9
=> x2-9x+17=9
<=> x2-9x+8=0
<=> (x-1)(x-8)=0
=> x=\(\left\{1;8\right\}\)
TH2: a=-9
=> x2-9x+17=-9
<=> x2-9x+26=0
<=> x2-9x+20,25+5,75=0
<=> (x-4,5)2+5,75=0
=> x\(\in\varnothing\)
Vậy x=\(\left\{1;8\right\}\)
T ko biết làm, chỉ hỏi liên thiên thôi :)))
Hủ phải không???? OvO Dưa Trong Cúc
\(B=\left(x^2-7x-10\right)\left(x-2\right)\left(x-5\right)=\left(x^2-7x-10\right)\left(x^2-7x+10\right)\)
\(=\left(x^2-7x\right)^2-100\ge-100\left(\text{vì }\left(x^2-7x\right)^2\ge0\right)\)
\(\text{Dấu "=" xảy ra khi :}\)
\(x^2-7x=0\)
\(\Leftrightarrow x=0\text{ hoặc }x=7\)
\(\text{Vậy GTNN của B là -100 tại x=0 hoặc x=7}\)