\(^2\) + 5y\(^2\) - 2xy + 2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

\(M=2x^2+5y^2-2xy+2y+2x=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(4y^2+2y+\dfrac{1}{4}\right)-\dfrac{5}{4}=\left(x-y\right)^2+\left(x+1\right)^2+\left(2y+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\)ta có: (x - y)^2 ≥ 0; (x+1)^2≥ ; (2y+1/2)^2 ≥ 0

=> gtnn M = -5/4

2 tháng 5 2018

ách nhầm:

\(M=2x^2+5y^2-2xy+2y+2x=\left(x^2+2x+1\right)+\left(x^2-2xy+y^2\right)+4\left(y^2+\dfrac{1}{2}y+\dfrac{1}{16}\right)+\dfrac{3}{4}=\left(x+1\right)^2+\left(x-y\right)^2+4\left(y-\dfrac{1}{4}\right)^2+\dfrac{3}{4}\)

ta có: (x - y)^2 ≥ 0; (x+1)^2≥ ; 4(y+1/4)^2 ≥ 0

vậy gtnn M = 3/4 khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x+1\right)^2=0\\\left(y-\dfrac{1}{4}\right)^2=0\end{matrix}\right.\)

!!?

NV
21 tháng 4 2019

\(2M=4x^2+10y^2-4xy+4x+4y\)

\(2M=4x^2+y^2+1-4xy+4x-2y+9y^2+6y+1-2\)

\(2M=\left(2x-y+1\right)^2+\left(3y+1\right)^2-2\ge-2\)

\(\Rightarrow M\ge-1\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}y=-\frac{1}{3}\\x=-\frac{2}{3}\end{matrix}\right.\)

25 tháng 11 2016

mấy bn ơi, giúp mk nhanh vs nha!!!!!!!!!!!

25 tháng 11 2016

a/ A = 2x2 + y2 - 2xy - 2x + 3

= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2

= (x - y)2 + (x - 1)2 + 2\(\ge2\)

12 tháng 12 2016

lớn nhất chứ

Câu 1: 

a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)

b: \(D=x^3+y^3+3xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)

\(=1-3xy+3xy=1\)

NV
21 tháng 2 2020

\(D=\frac{1}{2}\left(4x^2+4xy+y^2+16-16x-8y\right)+\frac{9}{2}\left(y^2-4y+4\right)-26\)

\(D=\frac{1}{2}\left(2x+y-4\right)^2+\frac{9}{2}\left(y-2\right)^2-26\ge-26\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

3 tháng 2 2017

\(2x^2+y^2+2xy-6x-2y+10\)

\(=\left(x^2-4x+4\right)+\left(x^2+y^2+1+2xy-2y-2x\right)+5\)

\(=\left(x-2\right)^2+\left(x+y-1\right)^2+5\ge5\)

13 tháng 6 2017

a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)

\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)

\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)

\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)

Dấu "=" xảy ra khi x=-1 và y=0

13 tháng 6 2017

b)\(5x^2+y^2+2xy-4x=\left(x^2+2xy+y^2\right)+\left(4x^2-4x+1\right)-1\)

\(=\left(x+y\right)^2+\left(2x-1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi x=1/2 và y=-1/2